-
Notifications
You must be signed in to change notification settings - Fork 23
/
arima.py
132 lines (115 loc) · 4.65 KB
/
arima.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import sys
import platform
import pandas as pd
import numpy as np
import time
import itertools
import matplotlib.pyplot as plt
import datetime
import statsmodels.api as sm
import statsmodels.tsa.api as smt
import argparse as arg
from statsmodels.tsa.statespace.sarimax import SARIMAX
from math import sqrt
from sklearn.metrics import mean_absolute_error, mean_squared_error
from multiprocessing import Pool
from tool.utils import Util
import warnings
warnings.filterwarnings('ignore')
import xarray as xr
def get_arguments():
parser = arg.ArgumentParser()
parser.add_argument('--chirps', action='store_true')
parser.add_argument('-s', '--step', default=5)
return parser.parse_args()
def get_dataset_file(chirps):
dataset_name, dataset_file = None, None
if (chirps):
dataset_file = 'data/baseline-chirps-1981-2019.nc'
dataset_name = 'chirps'
else:
dataset_file = 'data/baseline-ucar-1979-2015.nc'
dataset_name = 'cfsr'
return dataset_name, dataset_file
def create_test_sequence(dataset, n_steps_out):
"""split the dataset into samples"""
y = []
for i in range(len(dataset)):
out_end_ix = i + n_steps_out
if out_end_ix > len(dataset):
break
seq_y = dataset[i:out_end_ix]
y.append(seq_y)
return np.array(y)
def run_arima(df, chirps, step):
series = None
rmse_val, mae_val = 0.,0.
rmse_mean, mae_mean = -999., -999.
lat = df['lat'].unique()
lon = df['lon'].unique()
try:
series = df['precip'] if (chirps) else df['air_temp']
if ((series > 0).any()):
split = len(series) - (step + 5)
train = series[:split].values
test = series[split:].values
test_sequence = create_test_sequence(test, step)
for observation, sequence in zip(test,test_sequence):
start_index = len(train)
end_index = start_index + (step-1)
model = SARIMAX(train, order=(5,0,1))
results = model.fit(disp=False)
pred_sequence = results.predict(start=start_index, end=end_index, dynamic=False)
rmse_val += rmse(sequence, pred_sequence)
mae_val += mean_absolute_error(sequence, pred_sequence)
np.append(train,observation)
rmse_mean = rmse_val/len(test_sequence)
mae_mean = mae_val/len(test_sequence)
print(f'\n=> Model ARIMA lat: {lat}, lon: {lon}')
print(f'RMSE: {rmse_mean:.8f}')
print(f'MAE: {mae_mean:.8f}')
else:
print(f'\n** lat: {lat}, lon: {lon} has all zero values')
except Exception as e:
print(f'\n## lat: {lat}, lon: {lon} error: {e}')
sys.stdout.flush()
return (rmse_mean, mae_mean)
def rmse(y_actual, y_predicted):
return sqrt(mean_squared_error(y_actual, y_predicted) + 1e-6)
if __name__ == '__main__':
print('RUN MODEL: ARIMA')
args = get_arguments()
dataset_name, dataset_file = get_dataset_file(args.chirps)
ds = xr.open_mfdataset(dataset_file)
with Pool() as pool:
i = range(ds.lat.size)
index_list = list(itertools.product(i,i))
# separate time series based on each location
ds_list = [ds.isel(lat=index[0],lon=index[1]).to_dataframe() for index in index_list]
util = Util('ARIMA')
results = pool.starmap(run_arima, zip(ds_list,
itertools.repeat(args.chirps),
itertools.repeat(int(args.step))))
results = np.array(results)
pool.close()
pool.join()
print('Elapsed time', util.get_time_info()['elapsed_time'])
rmse_list = [result[0] for result in results if result[0] >= 0]
mae_list = [result[1] for result in results if result[1] >= 0]
rmse_mean, rmse_std = np.mean(rmse_list), np.std(rmse_list)
mae_mean, mae_std = np.mean(mae_list), np.std(mae_list)
print('\nRMSE: ', rmse_list)
print('\nMAE: ', mae_list)
print('-----------------------')
print(f'Mean and standard deviation')
print(f'=> RMSE: mean: {rmse_mean:.4f}, std: {rmse_std:.6f}')
print(f'=> MAE: mean: {mae_mean:.4f}, std: {mae_std:.6f}')
print('-----------------------')
message = {'rmse_mean': rmse_mean,
'rmse_std': rmse_std,
'mae_mean': mae_mean,
'mae_std': mae_std,
'dataset_name': dataset_name,
'step': args.step,
'hostname': platform.node()}
util.send_email(message)