diff --git a/modules/gfpgan_model.py b/modules/gfpgan_model.py index 8e0f13bdc7d..01d668ecdaf 100644 --- a/modules/gfpgan_model.py +++ b/modules/gfpgan_model.py @@ -9,6 +9,7 @@ model_dir = "GFPGAN" user_path = None model_path = os.path.join(paths.models_path, model_dir) +model_file_path = None model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth" have_gfpgan = False loaded_gfpgan_model = None @@ -17,6 +18,7 @@ def gfpgann(): global loaded_gfpgan_model global model_path + global model_file_path if loaded_gfpgan_model is not None: loaded_gfpgan_model.gfpgan.to(devices.device_gfpgan) return loaded_gfpgan_model @@ -24,17 +26,24 @@ def gfpgann(): if gfpgan_constructor is None: return None - models = modelloader.load_models(model_path, model_url, user_path, ext_filter="GFPGAN") + models = modelloader.load_models(model_path, model_url, user_path, ext_filter=['.pth']) + if len(models) == 1 and models[0].startswith("http"): model_file = models[0] elif len(models) != 0: - latest_file = max(models, key=os.path.getctime) + gfp_models = [] + for item in models: + if 'GFPGAN' in os.path.basename(item): + gfp_models.append(item) + latest_file = max(gfp_models, key=os.path.getctime) model_file = latest_file else: print("Unable to load gfpgan model!") return None + if hasattr(facexlib.detection.retinaface, 'device'): facexlib.detection.retinaface.device = devices.device_gfpgan + model_file_path = model_file model = gfpgan_constructor(model_path=model_file, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None, device=devices.device_gfpgan) loaded_gfpgan_model = model @@ -77,19 +86,25 @@ def setup_model(dirname): global user_path global have_gfpgan global gfpgan_constructor + global model_file_path + + facexlib_path = model_path + + if dirname is not None: + facexlib_path = dirname load_file_from_url_orig = gfpgan.utils.load_file_from_url facex_load_file_from_url_orig = facexlib.detection.load_file_from_url facex_load_file_from_url_orig2 = facexlib.parsing.load_file_from_url def my_load_file_from_url(**kwargs): - return load_file_from_url_orig(**dict(kwargs, model_dir=model_path)) + return load_file_from_url_orig(**dict(kwargs, model_dir=model_file_path)) def facex_load_file_from_url(**kwargs): - return facex_load_file_from_url_orig(**dict(kwargs, save_dir=model_path, model_dir=None)) + return facex_load_file_from_url_orig(**dict(kwargs, save_dir=facexlib_path, model_dir=None)) def facex_load_file_from_url2(**kwargs): - return facex_load_file_from_url_orig2(**dict(kwargs, save_dir=model_path, model_dir=None)) + return facex_load_file_from_url_orig2(**dict(kwargs, save_dir=facexlib_path, model_dir=None)) gfpgan.utils.load_file_from_url = my_load_file_from_url facexlib.detection.load_file_from_url = facex_load_file_from_url