-
Notifications
You must be signed in to change notification settings - Fork 8
/
video.cpp
412 lines (371 loc) · 12.5 KB
/
video.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
// c47edit - Scene editor for HM C47
// Copyright (C) 2018 AdrienTD
// Licensed under the GPL3+.
// See LICENSE file for more details.
#include <cassert>
#include "video.h"
#include "global.h"
#include "texture.h"
#include "window.h"
#include "gameobj.h"
#include "chunk.h"
#define WIN32_LEAN_AND_MEAN
#define NOMINMAX
#include <Windows.h>
#include <GL/glew.h>
#include <GL/wglew.h>
#define glprocvalid(x) (! ( ((uintptr_t)x==-1) || (((uintptr_t)x >= 0) && ((uintptr_t)x <= 3)) ) )
typedef BOOL(APIENTRY *gli_wglSwapIntervalEXT)(int n);
HDC whdc; HGLRC glrc;
int drawframes = 0;
extern HWND hWindow;
bool rendertextures = false;
bool renderColorTextures = true, renderLightmaps = true;
bool enableAlphaTest = true;
bool renderUntexturedFaces = false;
void InitVideo()
{
whdc = GetDC(hWindow);
// Set the pixel format
PIXELFORMATDESCRIPTOR pfd;
memset(&pfd, 0, sizeof(PIXELFORMATDESCRIPTOR)); // Be sure that pfd is filled with 0.
pfd.nSize = sizeof(PIXELFORMATDESCRIPTOR);
pfd.nVersion = 1;
pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER;
pfd.iPixelType = PFD_TYPE_RGBA;
pfd.cColorBits = 24;
pfd.cDepthBits = 32;
pfd.dwLayerMask = PFD_MAIN_PLANE;
int i = ChoosePixelFormat(whdc, &pfd);
SetPixelFormat(whdc, i, &pfd);
glrc = wglCreateContext(whdc);
wglMakeCurrent(whdc, glrc);
glewInit();
// Set VSYNC
if (WGLEW_EXT_swap_control) {
if (!wglSwapIntervalEXT(1))
printf("wglSwapIntervalEXT returned FALSE.\n");
}
else {
printf("wglSwapIntervalEXT unsupported.\n");
}
}
void BeginDrawing()
{
glViewport(0, 0, screen_width, screen_height);
}
void EndDrawing()
{
SwapBuffers(whdc); drawframes++;
}
std::map<const Mesh*, std::vector<Vector3>> g_skinnedMeshMap;
float* ApplySkinToMesh(const Mesh* mesh, Chunk* excChunk)
{
auto [it,inserted] = g_skinnedMeshMap.try_emplace(mesh);
if (!inserted)
return (float*)it->second.data();
#pragma pack(push, 1)
struct BonePre {
uint16_t parentIndex, flags;
double stuff[7];
char name[16];
};
static_assert(sizeof(BonePre) == 0x4C);
#pragma pack(pop)
if (Chunk* lche = excChunk->findSubchunk('LCHE')) {
Chunk* hmtx = excChunk->findSubchunk('HMTX');
Chunk* hpre = excChunk->findSubchunk('HPRE');
Chunk* hpts = excChunk->findSubchunk('HPTS');
Chunk* hpvd = excChunk->findSubchunk('HPVD');
Chunk* vrmp = excChunk->findSubchunk('VRMP');
assert(hmtx && hpre && hpts && vrmp && hpvd);
uint32_t numBones = *(uint32_t*)lche->maindata.data();
uint32_t numUsedVertices = *(uint32_t*)(lche->maindata.data() + 12);
assert(hmtx->multidata.size() == numBones);
// compute global matrix for each bone
std::vector<std::pair<Matrix, std::string>> boneGlobal;
boneGlobal.reserve(numBones);
for (uint32_t i = 0; i < numBones; ++i) {
int xxx = i;
Matrix globalMtx = Matrix::getIdentity();
std::string bonePath;
while (xxx != 65535) {
const BonePre* bone;
if (hpre->maindata.size() > 0)
bone = ((BonePre*)hpre->maindata.data()) + xxx;
else
bone = (BonePre*)hpre->multidata[0].data() + xxx;
const double* dmtx = (double*)hmtx->multidata[xxx].data();
Matrix boneMtx = Matrix::getIdentity();
for (int row = 3; row >= 0; --row) {
boneMtx.m[row][0] = (float)*(dmtx++);
boneMtx.m[row][1] = (float)*(dmtx++);
boneMtx.m[row][2] = (float)*(dmtx++);
}
globalMtx = globalMtx * boneMtx;
bonePath += bone->name;
bonePath += '/';
xxx = bone->parentIndex;
}
boneGlobal.push_back({ globalMtx, std::move(bonePath) });
}
// working vector buffer
std::vector<Vector3>& workBuffer = it->second;
workBuffer.resize(mesh->getNumVertices());
memcpy(workBuffer.data(), mesh->vertices.data(), 12 * mesh->getNumVertices());
// transform each vertex with the global matrix of the corresponding bone
const uint16_t* ptsRanges = (uint16_t*)hpts->maindata.data();
for (uint32_t i = 0; i < numBones; ++i) {
uint16_t startRange = (i == 0) ? 0 : ptsRanges[i - 1];
uint16_t endRange = ptsRanges[i];
for (uint16_t vtx = startRange; vtx < endRange; ++vtx)
workBuffer[vtx] = workBuffer[vtx].transform(boneGlobal[i].first);
}
// apply HPVD
const uint32_t* pvd = (uint32_t*)hpvd->maindata.data();
bool the_end = false;
while (!the_end) {
uint32_t segStartInt = *pvd;
float segStartFloat = *(float*)(pvd + 1);
pvd += 2;
Vector3& usedVec = workBuffer[segStartInt];
usedVec *= segStartFloat;
while (true) {
uint32_t pntInt = *pvd;
uint32_t pntIndex = pntInt & 0x3FFFFFFF;
float pntFloat = *(float*)(pvd + 1);
pvd += 2;
usedVec += workBuffer[pntIndex] * pntFloat;
if (pntInt & 0x80000000) {
if (pntInt & 0x40000000)
the_end = true;
break;
}
}
}
// apply VRMP
const uint32_t* remap = (uint32_t*)vrmp->maindata.data();
uint32_t numSwaps = *(remap++);
for (uint32_t i = 0; i < numSwaps; ++i) {
uint32_t index1 = *(remap++);
uint32_t index2 = *(remap++);
assert((index1 % 3) == 0 && (index2 % 3) == 0);
workBuffer[index1 / 3] = workBuffer[index2 / 3];
}
}
return (float*)it->second.data();
}
// Prepared+Optimized Mesh for rendering
struct ProMesh {
using IndexType = uint16_t;
struct Part {
std::vector<Vector3> vertices;
std::vector<std::pair<float, float>> texcoords;
std::vector<std::pair<float, float>> lightmapCoords;
std::vector<uint32_t> colors;
std::vector<IndexType> indices;
};
struct PartKey {
uint16_t flags, texId, lgtId; bool invisible;
PartKey(uint16_t texId, uint16_t lgtId, uint16_t flags) :
flags(flags & 0x020A), texId(texId), lgtId(lgtId), invisible(!(flags & 0x0020)) {}
auto asRefTuple() const { return std::tie(flags, texId, lgtId, invisible); }
bool operator<(const PartKey& other) const { return asRefTuple() < other.asRefTuple(); }
bool operator==(const PartKey& other) const { return asRefTuple() == other.asRefTuple(); }
};
std::map<PartKey, Part> parts;
inline static std::map<Mesh*, ProMesh> g_proMeshes;
// Get a prepared mesh from the cache, make one if not already done
static ProMesh* getProMesh(Mesh* mesh, Chunk* excChunk) {
// If ProMesh found in the cache, return it
auto it = g_proMeshes.find(mesh);
if (it != g_proMeshes.end())
return &it->second;
// Else make one and return it:
static const float defUvs[8] = { 0,0, 0,1, 1,1, 1,0 };
static const uint32_t defColors[4] = { 0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFF000000 };
static const int uvit[4] = { 0,1,2,3 };
static const int lgtit[4] = { 0,1,3,2 };
ProMesh pro;
const float *verts = mesh->vertices.data();
size_t numQuads = mesh->getNumQuads();
size_t numTris = mesh->getNumTris();
const uint16_t *ftxFace = (uint16_t*)mesh->ftxFaces.data();
bool hasFtx = !mesh->ftxFaces.empty();
if (excChunk && excChunk->findSubchunk('LCHE'))
verts = ApplySkinToMesh(mesh, excChunk);
float *uvCoords = (float*)defUvs;
float *lgtCoords = (float*)defUvs;
if (hasFtx) {
uvCoords = (float*)mesh->textureCoords.data();
lgtCoords = (float*)mesh->lightCoords.data();
}
uint32_t* colorMap = nullptr;
if (!g_scene.lgtPack.subchunks.empty()) {
assert(g_scene.lgtPack.subchunks[0].tag == 'RGBA');
uint8_t* colorMapData = g_scene.lgtPack.subchunks[0].maindata.data();
assert(*(uint16_t*)(colorMapData + 6) == 2); // the width of color map must be 2
colorMapData += 0x14; // skip texture header until name
while (*colorMapData++); // skip texture name
colorMapData += 4; // skip mipmap size
colorMap = (uint32_t*)colorMapData;
}
auto nextFace = [&](int shape, ProMesh::IndexType* indices) {
bool isTextured = hasFtx && (ftxFace[0] & 0x20);
bool isLit = hasFtx && (ftxFace[0] & 0x80);
uint16_t texid = isTextured ? ftxFace[2] : 0xFFFF;
uint16_t lgtid = isLit ? ftxFace[3] : 0xFFFF;
auto& part = pro.parts[PartKey(texid, lgtid, ftxFace[0])];
IndexType prostart = (IndexType)part.vertices.size();
for (int j = 0; j < shape; j++) {
const float* uu = (isTextured ? uvCoords : defUvs) + uvit[j] * 2;
part.texcoords.push_back({ uu[0], uu[1] });
const float* lu = (isLit ? lgtCoords : defUvs) + uvit[j] * 2;
float lmOffsetU = 0.0f, lmOffsetV = 0.0f;
if (lgtid != 0xFFFF) {
const TexInfo* lgtInfo = (const TexInfo*)FindTextureChunk(g_scene, lgtid).first->maindata.data();
lmOffsetU = 0.5f / lgtInfo->width;
lmOffsetV = 0.5f / lgtInfo->height;
}
part.lightmapCoords.push_back({ lu[0] + lmOffsetU, lu[1] + lmOffsetV });
uint32_t color = (isLit && ftxFace[3] == 0xFFFF && colorMap) ? colorMap[4 * (ftxFace[5] - 1) + lgtit[j]] : 0xFFFFFFFF;
part.colors.push_back(color);
const float* v = verts + indices[j] * 3 / 2;
part.vertices.push_back({ v[0], v[1], v[2] });
}
for (int s = 2; s < shape; ++s)
for (int j : {0, s - 1, s})
part.indices.push_back((IndexType)(prostart + j));
ftxFace += 6;
if (isTextured) uvCoords += 8; // for triangles, 4th UV is ignored.
if (isLit) lgtCoords += 8;
};
for (size_t i = 0; i < numTris; i++) {
nextFace(3, mesh->triindices.data() + 3 * i);
}
for (size_t i = 0; i < numQuads; i++) {
nextFace(4, mesh->quadindices.data() + 4 * i);
}
g_proMeshes[mesh] = std::move(pro);
return &g_proMeshes[mesh];
}
};
std::map<ProMesh::PartKey, std::vector<std::pair<Matrix, const ProMesh::Part*>>> g_meshLists;
void DrawMesh(Mesh* mesh, const Matrix& matrix, Chunk* excChunk)
{
if (!rendertextures)
{
const float* vertices = mesh->vertices.data();
if (excChunk && excChunk->findSubchunk('LCHE'))
vertices = ApplySkinToMesh(mesh, excChunk);
glLoadMatrixf(matrix.v);
glVertexPointer(3, GL_FLOAT, 6, vertices);
glDrawElements(GL_QUADS, mesh->quadindices.size(), GL_UNSIGNED_SHORT, mesh->quadindices.data());
glDrawElements(GL_TRIANGLES, mesh->triindices.size(), GL_UNSIGNED_SHORT, mesh->triindices.data());
}
else
{
ProMesh* pro = ProMesh::getProMesh(mesh, excChunk);
for (auto& [mat,part] : pro->parts) {
if (!renderUntexturedFaces && mat.invisible)
continue;
g_meshLists[mat].push_back({ matrix, &part });
}
}
}
void RenderMeshLists()
{
if (!rendertextures)
return;
for (auto& [mat, partList] : g_meshLists) {
GLuint gltex = 0, gllgt = 0;
if (renderColorTextures)
if (auto t = texmap.find(mat.texId); t != texmap.end())
gltex = (GLuint)(uintptr_t)t->second;
if (renderLightmaps)
if (auto t = texmap.find(mat.lgtId); t != texmap.end())
gllgt = (GLuint)(uintptr_t)t->second;
glActiveTextureARB(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, gltex);
glActiveTextureARB(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, gllgt);
if (enableAlphaTest && (mat.flags & 0x0200)) {
glEnable(GL_ALPHA_TEST);
glAlphaFunc(GL_GEQUAL, 0.1f);
}
else {
glDisable(GL_ALPHA_TEST);
}
//if (flags & 0x0002) {
// glEnable(GL_BLEND);
// glBlendFunc(GL_ONE, GL_ONE);
//}
//else {
// glDisable(GL_BLEND);
//}
for (auto& [matrix, partPtr] : partList) {
auto& part = *partPtr;
glVertexPointer(3, GL_FLOAT, 12, part.vertices.data());
if (renderLightmaps)
glColorPointer(4, GL_UNSIGNED_BYTE, 4, part.colors.data());
glClientActiveTextureARB(GL_TEXTURE0);
glTexCoordPointer(2, GL_FLOAT, 8, part.texcoords.data());
glClientActiveTextureARB(GL_TEXTURE1);
glTexCoordPointer(2, GL_FLOAT, 8, part.lightmapCoords.data());
glLoadMatrixf(matrix.v);
glDrawElements(GL_TRIANGLES, part.indices.size(), GL_UNSIGNED_SHORT, part.indices.data());
}
}
}
void InvalidateMesh(Mesh* mesh)
{
ProMesh::g_proMeshes.erase(mesh);
g_skinnedMeshMap.erase(mesh);
}
void UncacheAllMeshes()
{
ProMesh::g_proMeshes.clear();
g_skinnedMeshMap.clear();
}
void BeginMeshDraw()
{
if (!rendertextures) {
glEnableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glDisable(GL_TEXTURE_2D);
}
else {
if (!GLEW_ARB_multitexture)
ferr("Your OpenGL driver doesn't support multitextures. Big oof.");
glEnableClientState(GL_VERTEX_ARRAY);
if (renderLightmaps)
glEnableClientState(GL_COLOR_ARRAY);
else
glDisableClientState(GL_COLOR_ARRAY);
glActiveTextureARB(GL_TEXTURE0);
glClientActiveTextureARB(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glActiveTextureARB(GL_TEXTURE1);
glClientActiveTextureARB(GL_TEXTURE1);
glEnable(GL_TEXTURE_2D);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
for (auto& [mat, list] : g_meshLists)
list.clear();
}
glColor4f(1, 1, 1, 1);
}
void EndMeshDraw()
{
if (rendertextures) {
glActiveTextureARB(GL_TEXTURE1);
glClientActiveTextureARB(GL_TEXTURE1);
glDisable(GL_TEXTURE_2D);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
glActiveTextureARB(GL_TEXTURE0);
glClientActiveTextureARB(GL_TEXTURE0);
glDisable(GL_ALPHA_TEST);
glDisable(GL_BLEND);
}
}