-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
254 lines (213 loc) · 8.51 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# -*- coding: utf-8 -*-
from __future__ import print_function, division
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from torchvision import datasets, models, transforms
import os
import time
import yaml
import math
import argparse
import scipy.io
import numpy as np
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore")
from utils.utils_server import load_network
from datasets.queryDataset import Dataset_query, Query_transforms
#fp16
try:
from apex.fp16_utils import *
except ImportError: # will be 3.x series
print('This is not an error. If you want to use low precision, i.e., fp16, please install the apex with cuda support (https://github.com/NVIDIA/apex) and update pytorch to 1.0')
######################################################################
# Options
# --------
parser = argparse.ArgumentParser(description='Testing')
parser.add_argument('--gpu_ids', default='0', type=str, help='gpu_ids: e.g. 0 0,1,2 0,2')
parser.add_argument('--test_dir', default='./data/University-Release/test', type=str, help='./test_data')
parser.add_argument('--checkpoint', default='net_119.pth', type=str, help='save model path')
parser.add_argument('--batchsize', default=128, type=int, help='batchsize')
parser.add_argument('--h', default=256, type=int, help='height')
parser.add_argument('--w', default=256, type=int, help='width')
parser.add_argument('--ms', default='1', type=str, help='multiple_scale: e.g. 1 1,1.1 1,1.1,1.2')
parser.add_argument('--mode', default='1', type=int, help='1:drone->satellite 2:satellite->drone')
parser.add_argument('--num_worker', default=4, type=int, help='number of worker')
parser.add_argument('--pad', default=0, type=int, help='padding')
opt = parser.parse_args()
###load config###
# load the training config
config_path = 'opts.yaml'
with open(config_path, 'r') as stream:
config = yaml.load(stream)
opt.views = config['views']
opt.block = config['block']
opt.share = config['share']
if 'h' in config:
opt.h = config['h']
opt.w = config['w']
if 'nclasses' in config: # tp compatible with old config files
opt.nclasses = config['nclasses']
else:
opt.nclasses = 729
str_ids = opt.gpu_ids.split(',')
test_dir = opt.test_dir
gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >=0:
gpu_ids.append(id)
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu_ids
print('We use the scale: %s'%opt.ms)
str_ms = opt.ms.split(',')
ms = []
for s in str_ms:
s_f = float(s)
ms.append(math.sqrt(s_f))
# set gpu ids
if len(gpu_ids)>0:
# torch.cuda.set_device(gpu_ids[0])
cudnn.benchmark = True
######################################################################
# Load Data
# ---------
#
# We will use torchvision and torch.utils.data packages for loading the data.
#
data_transforms = transforms.Compose([
transforms.Resize((opt.h, opt.w), interpolation=3),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
data_query_transforms = transforms.Compose([
transforms.Resize((opt.h, opt.w), interpolation=3),
Query_transforms(pad=opt.pad,size=opt.w),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
data_dir = test_dir
image_datasets_query = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_query_transforms) for x in ['query_satellite', 'query_drone']}
image_datasets_gallery = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms) for x in ['gallery_satellite', 'gallery_drone']}
image_datasets = {**image_datasets_query, **image_datasets_gallery}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=opt.batchsize,
shuffle=False, num_workers=opt.num_worker) for x in ['gallery_satellite', 'gallery_drone', 'query_satellite', 'query_drone']}
use_gpu = torch.cuda.is_available()
######################################################################
# Extract feature
# ----------------------
#
# Extract feature from a trained model.
#
def fliplr(img):
'''flip horizontal'''
inv_idx = torch.arange(img.size(3)-1, -1, -1).long() # N x C x H x W
img_flip = img.index_select(3, inv_idx)
return img_flip
def which_view(name):
if 'satellite' in name:
return 1
elif 'street' in name:
return 2
elif 'drone' in name:
return 3
else:
print('unknown view')
return -1
def extract_feature(model,dataloaders, view_index = 1):
features = torch.FloatTensor()
count = 0
for data in tqdm(dataloaders):
img, label = data
n, c, h, w = img.size()
count += n
for i in range(2):
if(i==1):
img = fliplr(img)
input_img = Variable(img.cuda())
for scale in ms:
if scale != 1:
# bicubic is only available in pytorch>= 1.1
input_img = nn.functional.interpolate(input_img, scale_factor=scale, mode='bilinear', align_corners=False)
if opt.views ==2:
if view_index == 1:
outputs, _ = model(input_img, None)
elif view_index ==3:
_, outputs = model(None, input_img)
elif opt.views ==3:
if view_index == 1:
outputs, _, _ = model(input_img, None, None)
elif view_index ==2:
_, outputs, _ = model(None, input_img, None)
elif view_index ==3:
_, _, outputs = model(None, None, input_img)
if i==0:
ff = outputs
else:
ff += outputs
# norm feature
if len(ff.shape)==3:
fnorm = torch.norm(ff, p=2, dim=1, keepdim=True) * np.sqrt(ff.size(-1))
ff = ff.div(fnorm.expand_as(ff))
ff = ff.view(ff.size(0), -1)
else:
fnorm = torch.norm(ff, p=2, dim=1, keepdim=True)
ff = ff.div(fnorm.expand_as(ff))
features = torch.cat((features,ff.data.cpu()), 0)
return features
def get_id(img_path):
camera_id = []
labels = []
paths = []
for path, v in img_path:
folder_name = os.path.basename(os.path.dirname(path))
labels.append(int(folder_name))
paths.append(path)
return labels, paths
######################################################################
# Load Collected data Trained model
print('-------test-----------')
model = load_network(opt, gpu_ids)
print("Result of %s"%opt.checkpoint)
model = model.eval()
if use_gpu:
model = model.cuda()
# Extract feature
since = time.time()
if opt.mode==1:
query_name = 'query_satellite'
gallery_name = 'gallery_drone'
elif opt.mode==2:
query_name = 'query_drone'
gallery_name = 'gallery_satellite'
else:
raise Exception("opt.mode is not required")
#gallery_name = 'gallery_street'
#query_name = 'query_street'
which_gallery = which_view(gallery_name)
which_query = which_view(query_name)
print('%d -> %d:'%(which_query, which_gallery))
print(query_name.split("_")[-1], "->", gallery_name.split("_")[-1])
gallery_path = image_datasets[gallery_name].imgs
f = open('gallery_name.txt', 'w')
for p in gallery_path:
f.write(p[0]+'\n')
query_path = image_datasets[query_name].imgs
f = open('query_name.txt', 'w')
for p in query_path:
f.write(p[0]+'\n')
gallery_label, gallery_path = get_id(gallery_path)
query_label, query_path = get_id(query_path)
if __name__ == "__main__":
with torch.no_grad():
query_feature = extract_feature(model, dataloaders[query_name], which_query)
gallery_feature = extract_feature(model, dataloaders[gallery_name], which_gallery)
time_elapsed = time.time() - since
print('Test complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
# Save to Matlab for check
result = {'gallery_f':gallery_feature.numpy(), 'gallery_label':gallery_label, 'gallery_path':gallery_path, 'query_f':query_feature.numpy(), 'query_label':query_label, 'query_path':query_path}
scipy.io.savemat('pytorch_result.mat', result)
result = 'result.txt'
os.system('CUDA_VISIBLE_DEVICES=%d python evaluate_gpu.py | tee -a %s' % (gpu_ids[0], result))