forked from cseagle/blc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
architecture.cc
1325 lines (1150 loc) · 43.9 KB
/
architecture.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* ###
* IP: GHIDRA
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Set up decompiler for specific architectures
#include "coreaction.hh"
#ifdef CPUI_RULECOMPILE
#include "rulecompile.hh"
#endif
#ifdef CPUI_STATISTICS
#include <cmath>
#endif
vector<ArchitectureCapability *> ArchitectureCapability::thelist;
const uint4 ArchitectureCapability::majorversion = 3;
const uint4 ArchitectureCapability::minorversion = 5;
/// This builds a list of just the ArchitectureCapability extensions
void ArchitectureCapability::initialize(void)
{
thelist.push_back(this);
}
/// Given a specific file, find an ArchitectureCapability that can handle it.
/// \param filename is the path to the file
/// \return an ArchitectureCapability that can handle it or NULL
ArchitectureCapability *ArchitectureCapability::findCapability(const string &filename)
{
for(uint4 i=0;i<thelist.size();++i) {
ArchitectureCapability *capa = thelist[i];
if (capa->isFileMatch(filename))
return capa;
}
return (ArchitectureCapability *)0;
}
/// Given a parsed XML document, find an ArchitectureCapability that can handle it.
/// \param doc is the parsed XML document
/// \return an ArchitectureCapability that can handle it or NULL
ArchitectureCapability *ArchitectureCapability::findCapability(Document *doc)
{
for(uint4 i=0;i<thelist.size();++i) {
ArchitectureCapability *capa = thelist[i];
if (capa->isXmlMatch(doc))
return capa;
}
return (ArchitectureCapability *)0;
}
/// Modify order that extensions are searched, to effect which gets a chance
/// to run first.
/// Right now all we need to do is make sure the raw architecture comes last
void ArchitectureCapability::sortCapabilities(void)
{
uint4 i;
for(i=0;i<thelist.size();++i) {
if (thelist[i]->getName() == "raw") break;
}
if (i==thelist.size()) return;
ArchitectureCapability *capa = thelist[i];
for(uint4 j=i+1;j<thelist.size();++j)
thelist[j-1] = thelist[j];
thelist[ thelist.size()-1 ] = capa;
}
/// Set most sub-components to null pointers. Provide reasonable defaults
/// for the configurable options
Architecture::Architecture(void)
{
// endian = -1;
trim_recurse_max = 5; // Reasonable default value
max_implied_ref = 2; // 2 is best, in specific cases a higher number might be good
max_term_duplication = 2; // 2 and 3 (4) are pretty reasonable
max_basetype_size = 10; // Needs to be 8 or bigger
min_funcsymbol_size = 1;
aggressive_ext_trim = false;
readonlypropagate = false;
infer_pointers = true;
pointer_lowerbound = 0x1000;
funcptr_align = 0;
flowoptions = 0;
defaultfp = (ProtoModel *)0;
defaultReturnAddr.space = (AddrSpace *)0;
evalfp_current = (ProtoModel *)0;
evalfp_called = (ProtoModel *)0;
types = (TypeFactory *)0;
translate = (Translate *)0;
loader = (LoadImage *)0;
pcodeinjectlib = (PcodeInjectLibrary *)0;
commentdb = (CommentDatabase *)0;
cpool = (ConstantPool *)0;
symboltab = new Database(this);
context = (ContextDatabase *)0;
print = PrintLanguageCapability::getDefault()->buildLanguage(this);
printlist.push_back(print);
options = new OptionDatabase(this);
loadersymbols_parsed = false;
#ifdef CPUI_STATISTICS
stats = new Statistics();
#endif
#ifdef OPACTION_DEBUG
debugstream = (ostream *)0;
#endif
}
/// Release resources for all sub-components
Architecture::~Architecture(void)
{ // Delete anything that was allocated
vector<TypeOp *>::iterator iter;
TypeOp *t_op;
for(iter=inst.begin();iter!=inst.end();++iter) {
t_op = *iter;
if (t_op != (TypeOp *)0)
delete t_op;
}
for(int4 i=0;i<extra_pool_rules.size();++i)
delete extra_pool_rules[i];
delete symboltab;
for(int4 i=0;i<(int4)printlist.size();++i)
delete printlist[i];
delete options;
#ifdef CPUI_STATISTICS
delete stats;
#endif
map<string,ProtoModel *>::const_iterator piter;
for(piter=protoModels.begin();piter!=protoModels.end();++piter)
delete (*piter).second;
if (types != (TypeFactory *)0)
delete types;
if (translate != (Translate *)0)
delete translate;
if (loader != (LoadImage *)0)
delete loader;
if (pcodeinjectlib != (PcodeInjectLibrary *)0)
delete pcodeinjectlib;
if (commentdb != (CommentDatabase *)0)
delete commentdb;
if (cpool != (ConstantPool *)0)
delete cpool;
if (context != (ContextDatabase *)0)
delete context;
}
/// The Architecture maintains the set of prototype models that can
/// be applied for this particular executable. Retrieve one by name.
/// The model must exist or an exception is thrown.
/// \param nm is the name
/// \return the matching model
ProtoModel *Architecture::getModel(const string &nm) const
{
map<string,ProtoModel *>::const_iterator iter;
iter = protoModels.find(nm);
if (iter==protoModels.end())
throw LowlevelError("Prototype model does not exist: "+nm);
return (*iter).second;
}
/// \param nm is the name of the model
/// \return \b true if this Architecture supports a model with that name
bool Architecture::hasModel(const string &nm) const
{ // Does this architecture have a prototype model of this name
map<string,ProtoModel *>::const_iterator iter;
iter = protoModels.find(nm);
return (iter != protoModels.end());
}
/// Get the address space associated with the indicated
/// \e spacebase register. I.e. if the location of the
/// \e stack \e pointer is passed in, this routine would return
/// a pointer to the \b stack space. An exception is thrown
/// if no corresponding space is found.
/// \param loc is the location of the \e spacebase register
/// \param size is the size of the register in bytes
/// \return a pointer to the address space
AddrSpace *Architecture::getSpaceBySpacebase(const Address &loc,int4 size) const
{
AddrSpace *id;
int4 sz = numSpaces();
for(int4 i=0;i<sz;++i) {
id = getSpace(i);
if (id == (AddrSpace *)0) continue;
int4 numspace = id->numSpacebase();
for(int4 j=0;j<numspace;++j) {
const VarnodeData &point(id->getSpacebase(j));
if (point.size != size) continue;
if (point.space != loc.getSpace()) continue;
if (point.offset != loc.getOffset()) continue;
return id;
}
}
throw LowlevelError("Unable to find entry for spacebase register");
return (AddrSpace *)0;
}
/// Look-up the laned register record associated with a specific storage location. Currently, the
/// record is only associated with the \e size of the storage, not its address. If there is no
/// associated record, null is returned.
/// \param loc is the starting address of the storage location
/// \param size is the size of the storage in bytes
/// \return the matching LanedRegister record or null
const LanedRegister *Architecture::getLanedRegister(const Address &loc,int4 size) const
{
int4 min = 0;
int4 max = lanerecords.size() - 1;
while(min <= max) {
int4 mid = (min + max) / 2;
int4 sz = lanerecords[mid].getWholeSize();
if (sz < size)
min = mid + 1;
else if (size < sz)
max = mid - 1;
else
return &lanerecords[mid];
}
return (const LanedRegister *)0;
}
/// Return a size intended for comparison with a Varnode size to immediately determine if
/// the Varnode is a potential laned register. If there are no laned registers for the architecture,
/// -1 is returned.
/// \return the size in bytes of the smallest laned register or -1.
int4 Architecture::getMinimumLanedRegisterSize(void) const
{
if (lanerecords.empty())
return -1;
return lanerecords[0].getWholeSize();
}
/// The default model is used whenever an explicit model is not known
/// or can't be determined.
/// \param nm is the name of the model to set
void Architecture::setDefaultModel(const string &nm)
{
defaultfp = getModel(nm);
}
/// Throw out the syntax tree, (unlocked) symbols, comments, and other derived information
/// about a single function.
/// \param fd is the function to clear
void Architecture::clearAnalysis(Funcdata *fd)
{
fd->clear(); // Clear stuff internal to function
// Clear out any analysis generated comments
commentdb->clearType(fd->getAddress(),Comment::warning|Comment::warningheader);
}
/// Symbols do not necessarily need to be available for the decompiler.
/// This routine loads all the \e load \e image knows about into the symbol table
void Architecture::readLoaderSymbols(void)
{
if (loadersymbols_parsed) return; // already read
Scope *scope = symboltab->getGlobalScope();
loader->openSymbols();
loadersymbols_parsed = true;
LoadImageFunc record;
while(loader->getNextSymbol(record)) {
scope->addFunction(record.address,record.name);
}
loader->closeSymbols();
}
/// For all registered p-code opcodes, return the corresponding OpBehavior object.
/// The object pointers are provided in a list indexed by OpCode.
/// \param behave is the list to be populated
void Architecture::collectBehaviors(vector<OpBehavior *> &behave) const
{
behave.resize(inst.size(), (OpBehavior *)0);
for(int4 i=0;i<inst.size();++i) {
TypeOp *op = inst[i];
if (op == (TypeOp *)0) continue;
behave[i] = op->getBehavior();
}
}
/// A \b near pointer is some form of truncated pointer that needs
/// \e segment or other information to fully form an address.
/// This method searches for a user-defined segment op registered
/// for the space
/// \param spc is the address space to check
/// \return true if the space supports a segment operation
bool Architecture::hasNearPointers(AddrSpace *spc) const
{
if (spc->getIndex() >= userops.numSegmentOps()) return false;
SegmentOp *segdef = userops.getSegmentOp(spc->getIndex());
if (segdef == (SegmentOp *)0) return false;
if (segdef->getResolve().space != (AddrSpace *)0)
return true;
return false;
}
/// Establish details of the prototype for a given function symbol
/// \param pieces holds the raw prototype information and the symbol name
void Architecture::setPrototype(const PrototypePieces &pieces)
{
Funcdata *fd = symboltab->getGlobalScope()->queryFunction( pieces.name );
if (fd == (Funcdata *)0)
throw ParseError("Unknown function name: "+pieces.name);
fd->getFuncProto().setPieces(pieces);
}
/// The decompiler supports one or more output languages (C, Java). This method
/// does the main work of selecting one of the supported languages.
/// In addition to selecting the main PrintLanguage object, this triggers
/// configuration of the cast strategy and p-code op behaviors.
/// \param nm is the name of the language
void Architecture::setPrintLanguage(const string &nm)
{
for(int4 i=0;i<(int4)printlist.size();++i) {
if (printlist[i]->getName() == nm) {
print = printlist[i];
print->adjustTypeOperators();
return;
}
}
PrintLanguageCapability *capa = PrintLanguageCapability::findCapability(nm);
if (capa == (PrintLanguageCapability *)0)
throw LowlevelError("Unknown print language: "+nm);
bool printxml = print->emitsXml(); // Copy settings for current print language
ostream *t = print->getOutputStream();
print = capa->buildLanguage(this);
print->setOutputStream(t); // Restore settings from previous language
print->getCastStrategy()->setTypeFactory(types);
if (printxml)
print->setXML(true);
printlist.push_back(print);
print->adjustTypeOperators();
return;
}
/// Set all IPTR_PROCESSOR and IPTR_SPACEBASE spaces to be global
void Architecture::globalify(void)
{
Scope *scope = buildGlobalScope();
int4 nm = numSpaces();
for(int4 i=0;i<nm;++i) {
AddrSpace *spc = getSpace(i);
if (spc == (AddrSpace *)0) continue;
if ((spc->getType() != IPTR_PROCESSOR)&&(spc->getType() != IPTR_SPACEBASE)) continue;
symboltab->addRange(scope,spc,(uintb)0,spc->getHighest());
}
}
/// Insert a series of out-of-band flow overrides based on a \<flowoverridelist> tag.
/// \param el is the XML element
void Architecture::restoreFlowOverride(const Element *el)
{
const List &list(el->getChildren());
List::const_iterator iter;
for(iter=list.begin();iter!=list.end();++iter) {
const Element *subel = *iter;
const List &sublist(subel->getChildren());
List::const_iterator subiter = sublist.begin();
Address funcaddr = Address::restoreXml(*subiter,this);
++subiter;
Address overaddr = Address::restoreXml(*subiter,this);
Funcdata *fd = symboltab->getGlobalScope()->queryFunction(funcaddr);
if (fd != (Funcdata *)0)
fd->getOverride().insertFlowOverride(overaddr,Override::stringToType(subel->getAttributeValue("type")));
}
}
/// Write the current state of all types, symbols, functions, etc. an XML stream
/// \param s is the output stream
void Architecture::saveXml(ostream &s) const
{
s << "<save_state";
a_v_b(s,"loadersymbols",loadersymbols_parsed);
s << ">\n";
types->saveXml(s);
symboltab->saveXml(s);
context->saveXml(s);
commentdb->saveXml(s);
if (!cpool->empty())
cpool->saveXml(s);
s << "</save_state>\n";
}
/// Read in all the sub-component state from a \<save_state> XML tag
/// When adding stuff to this BEWARE: The spec file has already initialized stuff
/// \param store is document store containing the parsed root tag
void Architecture::restoreXml(DocumentStorage &store)
{
const Element *el = store.getTag("save_state");
if (el == (const Element *)0)
throw LowlevelError("Could not find save_state tag");
if (el->getNumAttributes() != 0)
loadersymbols_parsed = xml_readbool(el->getAttributeValue("loadersymbols"));
else
loadersymbols_parsed = false;
const List &list(el->getChildren());
List::const_iterator iter;
for(iter=list.begin();iter!=list.end();++iter) {
const Element *subel = *iter;
if (subel->getName() == "typegrp")
types->restoreXml(subel);
else if (subel->getName() == "db")
symboltab->restoreXml(subel);
else if (subel->getName() == "context_points")
context->restoreXml(subel,this);
else if (subel->getName() == "commentdb")
commentdb->restoreXml(subel,this);
else if (subel->getName() == "constantpool")
cpool->restoreXml(subel,*types);
else if (subel->getName() == "optionslist")
options->restoreXml(subel);
else if (subel->getName() == "flowoverridelist")
restoreFlowOverride(subel);
else if (subel->getName() == "injectdebug")
pcodeinjectlib->restoreDebug(subel);
else
throw LowlevelError("XML error restoring architecture: " + subel->getName());
}
}
/// If no better name is available, this method can be used to generate
/// a function name based on its address
/// \param addr is the address of the function
/// \param name will hold the constructed name
void Architecture::nameFunction(const Address &addr,string &name) const
{
ostringstream defname;
defname << "func_";
addr.printRaw(defname);
name = defname.str();
}
/// This process sets up a "register relative" space for this architecture
/// If the name is "stack", this space takes on the role of an "official" stack space
/// Should only be called once during initialization
/// \param basespace is the address space underlying the stack
/// \param nm is the name of the new space
/// \param ptrdata is the register location acting as a pointer into the new space
/// \param truncSize is the (possibly truncated) size of the register that fits the space
/// \param isreversejustified is \b true if small variables are justified opposite of endianness
/// \param stackGrowth is \b true if a stack implemented in this space grows in the negative direction
void Architecture::addSpacebase(AddrSpace *basespace,const string &nm,const VarnodeData &ptrdata,
int4 truncSize,bool isreversejustified,bool stackGrowth)
{
int4 ind = numSpaces();
SpacebaseSpace *spc = new SpacebaseSpace(this,translate,nm,ind,truncSize,basespace,ptrdata.space->getDelay()+1);
if (isreversejustified)
setReverseJustified(spc);
insertSpace(spc);
addSpacebasePointer(spc,ptrdata,truncSize,stackGrowth);
}
/// This routine is used by the initialization process to add
/// address ranges to which there is never an (indirect) pointer
/// Should only be called during initialization
/// \param rng is the new range with no aliases to be added
void Architecture::addNoHighPtr(const Range &rng)
{
nohighptr.insertRange(rng.getSpace(),rng.getFirst(),rng.getLast());
}
/// This builds the \e universal Action for function transformation
/// and instantiates the "decompile" root Action
/// \param store may hold configuration information
void Architecture::buildAction(DocumentStorage &store)
{
parseExtraRules(store); // Look for any additional rules
universal_action(this);
allacts.setCurrent("decompile");
}
/// This builds the database which holds the status registers setings and other
/// information that can affect disassembly depending on context.
/// \param store may hold configuration information
void Architecture::buildContext(DocumentStorage &store)
{
context = new ContextInternal();
}
/// If it does not already exist create the glocal Scope object
/// \return the global Scope object
Scope *Architecture::buildGlobalScope(void)
{
Scope *globscope = symboltab->getGlobalScope();
if (globscope == (Scope *)0) { // Make sure global scope exists
globscope = new ScopeInternal("",this);
symboltab->attachScope(globscope,(Scope *)0);
}
return globscope;
}
/// This builds the TypeFactory object specific to this architecture and
/// prepopulates it with the \e core types. Core types may be pulled
/// from the configuration information, or default core types are used.
/// \param store contains possible configuration information
void Architecture::buildTypegrp(DocumentStorage &store)
{
const Element *el = store.getTag("coretypes");
types = new TypeFactory(this); // Initialize the object
if (el != (const Element *)0)
types->restoreXmlCoreTypes(el);
else {
// Put in the core types
types->setCoreType("void",1,TYPE_VOID,false);
types->setCoreType("bool",1,TYPE_BOOL,false);
types->setCoreType("uint1",1,TYPE_UINT,false);
types->setCoreType("uint2",2,TYPE_UINT,false);
types->setCoreType("uint4",4,TYPE_UINT,false);
types->setCoreType("uint8",8,TYPE_UINT,false);
types->setCoreType("int1",1,TYPE_INT,false);
types->setCoreType("int2",2,TYPE_INT,false);
types->setCoreType("int4",4,TYPE_INT,false);
types->setCoreType("int8",8,TYPE_INT,false);
types->setCoreType("float4",4,TYPE_FLOAT,false);
types->setCoreType("float8",8,TYPE_FLOAT,false);
types->setCoreType("float10",10,TYPE_FLOAT,false);
types->setCoreType("float16",16,TYPE_FLOAT,false);
types->setCoreType("xunknown1",1,TYPE_UNKNOWN,false);
types->setCoreType("xunknown2",2,TYPE_UNKNOWN,false);
types->setCoreType("xunknown4",4,TYPE_UNKNOWN,false);
types->setCoreType("xunknown8",8,TYPE_UNKNOWN,false);
types->setCoreType("code",1,TYPE_CODE,false);
types->setCoreType("char",1,TYPE_INT,true);
types->setCoreType("wchar2",2,TYPE_INT,true);
types->setCoreType("wchar4",4,TYPE_INT,true);
types->cacheCoreTypes();
}
}
/// Build the container that holds comments for executable in this Architecture.
/// \param store may hold configuration information
void Architecture::buildCommentDB(DocumentStorage &store)
{
commentdb = new CommentDatabaseInternal();
}
/// Some processor models (Java byte-code) need a database of constants.
/// The database is always built, but may remain empty.
/// \param store may hold configuration information
void Architecture::buildConstantPool(DocumentStorage &store)
{
cpool = new ConstantPoolInternal();
}
/// This registers the OpBehavior objects for all known p-code OpCodes.
/// The Translate and TypeFactory object should already be built.
/// \param store may hold configuration information
void Architecture::buildInstructions(DocumentStorage &store)
{
TypeOp::registerInstructions(inst,types,translate);
}
/// Once the processor is known, the Translate object can be built and
/// fully initialized. Processor and compiler specific configuration is performed
/// \param store will hold parsed configuration information
void Architecture::restoreFromSpec(DocumentStorage &store)
{
Translate *newtrans = buildTranslator(store); // Once language is described we can build translator
newtrans->initialize(store);
translate = newtrans;
modifySpaces(newtrans); // Give architecture chance to modify spaces, before copying
copySpaces(newtrans);
insertSpace( new FspecSpace(this,translate,"fspec",numSpaces()));
insertSpace( new IopSpace(this,translate,"iop",numSpaces()));
insertSpace( new JoinSpace(this,translate,"join",numSpaces()));
if (translate->getDefaultSize() < 3) // For small architectures
pointer_lowerbound = 0x100; // assume constants are pointers starting at a much lower bound
userops.initialize(this);
if (translate->getAlignment() <= 8)
min_funcsymbol_size = translate->getAlignment();
pcodeinjectlib = buildPcodeInjectLibrary();
parseProcessorConfig(store);
newtrans->setDefaultFloatFormats(); // If no explicit formats registered, put in defaults
parseCompilerConfig(store);
// Action stuff will go here
buildAction(store);
}
/// If any address space supports near pointers and segment operators,
/// setup SegmentedResolver objects that can be used to recover full pointers in context.
void Architecture::initializeSegments(void)
{
int4 sz = userops.numSegmentOps();
for(int4 i=0;i<sz;++i) {
SegmentOp *sop = userops.getSegmentOp(i);
if (sop == (SegmentOp *)0) continue;
SegmentedResolver *rsolv = new SegmentedResolver(this,sop->getSpace(),sop);
insertResolver(sop->getSpace(),rsolv);
}
}
/// Recover information out of a \<rule> tag and build the new Rule object.
/// \param el is the XML element
void Architecture::parseDynamicRule(const Element *el)
{
string rulename,groupname,enabled;
for(int4 i=0;i<el->getNumAttributes();++i) {
if (el->getAttributeName(i) == "name")
rulename = el->getAttributeValue(i);
else if (el->getAttributeName(i) == "group")
groupname = el->getAttributeValue(i);
else if (el->getAttributeName(i) == "enable")
enabled = el->getAttributeValue(i);
else
throw LowlevelError("Dynamic rule tag contains unknown attribute: "+el->getAttributeName(i));
}
if (rulename.size()==0)
throw LowlevelError("Dynamic rule has no name");
if (groupname.size()==0)
throw LowlevelError("Dynamic rule has no group");
if (enabled == "false") return;
#ifdef CPUI_RULECOMPILE
Rule *dynrule = RuleGeneric::build(rulename,groupname,el->getContent());
extra_pool_rules.push_back(dynrule);
#else
throw LowlevelError("Dynamic rules have not been enabled for this decompiler");
#endif
}
/// This handles the \<prototype> and \<resolveprototype> tags. It builds the
/// ProtoModel object based on the tag and makes it available generally to the decompiler.
/// \param el is the XML tag element
ProtoModel *Architecture::parseProto(const Element *el)
{
ProtoModel *res;
if (el->getName() == "prototype")
res = new ProtoModel(this);
else if (el->getName() == "resolveprototype")
res = new ProtoModelMerged(this);
else
throw LowlevelError("Expecting <prototype> or <resolveprototype> tag");
res->restoreXml(el);
ProtoModel *other = protoModels[res->getName()];
if (other != (ProtoModel *)0) {
delete res;
throw LowlevelError("Duplicate ProtoModel name: "+res->getName());
}
protoModels[res->getName()] = res;
return res;
}
/// This supports the \<eval_called_prototype> and \<eval_current_prototype> tag.
/// This determines which prototype model to assume when recovering the prototype
/// for a \e called function and the \e current function respectively.
/// \param el is the XML element
void Architecture::parseProtoEval(const Element *el)
{
ProtoModel *res = protoModels[ el->getAttributeValue("name") ];
if (res == (ProtoModel *)0)
throw LowlevelError("Unknown prototype model name: "+el->getAttributeValue("name"));
if (el->getName() == "eval_called_prototype") {
if (evalfp_called != (ProtoModel *)0)
throw LowlevelError("Duplicate <eval_called_prototype> tag");
evalfp_called = res;
}
else {
if (evalfp_current != (ProtoModel *)0)
throw LowlevelError("Duplicate <eval_current_prototype> tag");
evalfp_current = res;
}
}
/// There should be exactly one \<default_proto> tag that specifies what the
/// default prototype model is. This builds the ProtoModel object and sets it
/// as the default.
/// \param el is the XML element
void Architecture::parseDefaultProto(const Element *el)
{
const List &list(el->getChildren());
List::const_iterator iter;
for(iter=list.begin();iter!=list.end();++iter) {
if (defaultfp != (ProtoModel *)0)
throw LowlevelError("More than one default prototype model");
defaultfp = parseProto(*iter);
}
}
/// This handles the \<global> tag adding an address space (or part of the space)
/// to the global scope. Varnodes in this region will be assumed to be global variables.
/// \param el is the XML element
void Architecture::parseGlobal(const Element *el)
{
Scope *scope = buildGlobalScope();
const List &list(el->getChildren());
List::const_iterator iter;
for(iter=list.begin();iter!=list.end();++iter) {
Range range;
range.restoreXml(*iter,this);
symboltab->addRange(scope,range.getSpace(),range.getFirst(),range.getLast());
if (range.getSpace()->isOverlayBase()) { // If the address space is overlayed
// We need to duplicate the range being marked as global into the overlay space(s)
int4 num = numSpaces();
for(int4 i=0;i<num;++i) {
OverlaySpace *ospc = (OverlaySpace *)getSpace(i);
if (ospc == (AddrSpace *)0 || !ospc->isOverlay()) continue;
if (ospc->getBaseSpace() != range.getSpace()) continue;
symboltab->addRange(scope,ospc,range.getFirst(),range.getLast());
}
}
}
}
//explictly add the OTHER space and any overlays to the global scope
void Architecture::addOtherSpace(void)
{
Scope *scope = buildGlobalScope();
AddrSpace *otherSpace = getSpaceByName("OTHER");
symboltab->addRange(scope,otherSpace,0,otherSpace->getHighest());
if (otherSpace->isOverlayBase()) {
int4 num = numSpaces();
for(int4 i=0;i<num;++i){
OverlaySpace *ospc = (OverlaySpace *)getSpace(i);
if (ospc->getBaseSpace() != otherSpace) continue;
if (ospc->getBaseSpace() != otherSpace) continue;
symboltab->addRange(scope,ospc,0,otherSpace->getHighest());
}
}
}
/// This applies info from a \<readonly> tag marking a specific region
/// of the executable as \e read-only.
/// \param el is the XML element
void Architecture::parseReadOnly(const Element *el)
{
const List &list(el->getChildren());
List::const_iterator iter;
for(iter=list.begin();iter!=list.end();++iter) {
Range range;
range.restoreXml(*iter,this);
symboltab->setPropertyRange(Varnode::readonly,range);
}
}
/// This applies info from a \<volatile> tag marking specific regions
/// of the executable as holding \e volatile memory or registers.
/// \param el is the XML element
void Architecture::parseVolatile(const Element *el)
{
userops.parseVolatile(el,this);
const List &list(el->getChildren());
List::const_iterator iter;
for(iter=list.begin();iter!=list.end();++iter) {
Range range;
range.restoreXml(*iter,this); // Tag itself is range
symboltab->setPropertyRange(Varnode::volatil,range);
}
}
/// This applies info from \<returnaddress> tag and sets the default
/// storage location for the \e return \e address of a function.
/// \param el is the XML element
void Architecture::parseReturnAddress(const Element *el)
{
const List &list(el->getChildren());
List::const_iterator iter;
iter = list.begin();
if (iter == list.end()) return;
if (defaultReturnAddr.space != (AddrSpace *)0)
throw LowlevelError("Multiple <returnaddress> tags in .cspec");
defaultReturnAddr.restoreXml(*iter,this);
}
/// Apply information from an \<incidentalcopy> tag, which marks a set of addresses
/// as being copied to incidentally. This allows the decompiler to ignore certain side-effects.
/// \param el is the XML element
void Architecture::parseIncidentalCopy(const Element *el)
{
const List &list(el->getChildren());
List::const_iterator iter;
for(iter=list.begin();iter!=list.end();++iter) {
VarnodeData vdata;
vdata.restoreXml(*iter,this);
Range range( vdata.space, vdata.offset, vdata.offset+vdata.size-1);
symboltab->setPropertyRange(Varnode::incidental_copy,range);
}
}
/// Look for \<register> tags that have a \e vector_lane_size attribute.
/// Record these so that the decompiler can split large registers into appropriate lane size pieces.
/// \param el is the XML element
void Architecture::parseLaneSizes(const Element *el)
{
vector<uint4> maskList;
const List &childList(el->getChildren());
List::const_iterator iter;
LanedRegister lanedRegister; // Only allocate once
for(iter=childList.begin();iter!=childList.end();++iter) {
if (lanedRegister.restoreXml(*iter, this)) {
int4 sizeIndex = lanedRegister.getWholeSize();
while (maskList.size() <= sizeIndex)
maskList.push_back(0);
maskList[sizeIndex] |= lanedRegister.getSizeBitMask();
}
}
lanerecords.clear();
for(int4 i=0;i<maskList.size();++i) {
if (maskList[i] == 0) continue;
lanerecords.push_back(LanedRegister(i,maskList[i]));
}
}
/// Create a stack space and a stack-pointer register from this \<stackpointer> element
/// \param el is the XML element
void Architecture::parseStackPointer(const Element *el)
{
AddrSpace *basespace = getSpaceByName(el->getAttributeValue("space"));
bool stackGrowth = true; // Default stack growth is in negative direction
if (basespace == (AddrSpace *)0)
throw LowlevelError("Unknown space name: "+el->getAttributeValue("space"));
bool isreversejustify = false;
int4 numattr = el->getNumAttributes();
for(int4 i=0;i<numattr;++i) {
const string &attr( el->getAttributeName(i) );
if (attr == "reversejustify")
isreversejustify = xml_readbool(el->getAttributeValue(i));
else if (attr == "growth")
stackGrowth = el->getAttributeValue(i) == "negative";
}
VarnodeData point = translate->getRegister(el->getAttributeValue("register"));
// If creating a stackpointer to a truncated space, make sure to truncate the stackpointer
int4 truncSize = point.size;
if (basespace->isTruncated() && (point.size > basespace->getAddrSize())) {
truncSize = basespace->getAddrSize();
}
addSpacebase(basespace,"stack",point,truncSize,isreversejustify,stackGrowth); // Create the "official" stackpointer
}
/// Manually alter the dead-code delay for a specific address space,
/// based on a \<deadcodedelay> tag.
/// \param el is the XML element
void Architecture::parseDeadcodeDelay(const Element *el)
{
AddrSpace *spc = getSpaceByName(el->getAttributeValue("space"));
if (spc == (AddrSpace *)0)
throw LowlevelError("Unknown space name: "+el->getAttributeValue("space"));
istringstream s(el->getAttributeValue("delay"));
s.unsetf(ios::dec | ios::hex | ios::oct);
int4 delay = -1;
s >> delay;
if (delay >= 0)
setDeadcodeDelay(spc,delay);
else
throw LowlevelError("Bad <deadcodedelay> tag");
}
/// Pull information from a \<funcptr> tag. Turn on alignment analysis of
/// function pointers, some architectures have aligned function pointers
/// and encode extra information in the unused bits.
/// \param el is the XML element
void Architecture::parseFuncPtrAlign(const Element *el)
{
int4 align;
istringstream s(el->getAttributeValue("align"));
s.unsetf(ios::dec | ios::hex | ios::oct);
s >> align;
if (align == 0) {
funcptr_align = 0; // No alignment
return;
}
int4 bits = 0;
while((align&1)==0) { // Find position of first 1 bit
bits += 1;
align >>= 1;
}
funcptr_align = bits;
}
/// Designate a new index register and create a new address space associated with it,
/// based on a \<spacebase> tag.
/// \param el is the XML element
void Architecture::parseSpacebase(const Element *el)
{
const string &namestring(el->getAttributeValue("name"));
const VarnodeData &point(translate->getRegister(el->getAttributeValue("register")));
AddrSpace *basespace = getSpaceByName(el->getAttributeValue("space"));
if (basespace == (AddrSpace *)0)
throw LowlevelError("Unknown space name: "+el->getAttributeValue("space"));
addSpacebase(basespace,namestring,point,point.size,false,false);
}
/// Configure memory based on a \<nohighptr> tag. Mark specific address ranges
/// to indicate the decompiler will not encounter pointers (aliases) into the range.
/// \param el is the XML element
void Architecture::parseNoHighPtr(const Element *el)
{
const List &list(el->getChildren());
List::const_iterator iter;
for(iter=list.begin();iter!=list.end();++iter) { // Iterate over every range tag in the list
Range range;
range.restoreXml(*iter,this);
addNoHighPtr(range);
}
}
/// Configure registers based on a \<prefersplit> tag. Mark specific varnodes that
/// the decompiler should automatically split when it first sees them.
/// \param el is the XML element
void Architecture::parsePreferSplit(const Element *el)
{
string style = el->getAttributeValue("style");
if (style != "inhalf")
throw LowlevelError("Unknown prefersplit style: "+style);
const List &list(el->getChildren());
List::const_iterator iter;
for(iter=list.begin();iter!=list.end();++iter) {
splitrecords.push_back(PreferSplitRecord());
PreferSplitRecord &record( splitrecords.back() );
record.storage.restoreXml( *iter, this );
record.splitoffset = record.storage.size/2;
}
}
/// Configure based on the \<aggressivetrim> tag, how aggressively the
/// decompiler will remove extension operations.