-
Notifications
You must be signed in to change notification settings - Fork 11
/
loss.py
311 lines (251 loc) · 14 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
import time
import os
import csv
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from utils.training_utils import multi_scale
from utils.bboxes_utils import (
iou_width_height,
intersection_over_union,
non_max_suppression as nms
)
from utils.plot_utils import cells_to_bboxes, plot_image
import config
from model import YOLOV5m
from dataset import Training_Dataset
import torch.nn.functional as F
class YOLO_LOSS:
def __init__(self, model, rect_training, save_logs=False, filename=None, resume=False):
self.rect_training = rect_training
self.mse = nn.MSELoss()
self.BCE_cls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(config.CLS_PW))
self.BCE_obj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor(config.OBJ_PW))
self.sigmoid = nn.Sigmoid()
# check them here (https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml)
# and here (https://github.com/ultralytics/yolov5/blob/master/utils/loss.py#L170)
# also notice that these values depend on other model attributes (https://github.com/ultralytics/yolov5/blob/master/train.py#L232)
self.lambda_class = 0.5 * (model.head.nc / 80 * 3 / model.head.nl)
self.lambda_obj = 1 * ((config.IMAGE_SIZE / 640) ** 2 * 3 / model.head.nl)
self.lambda_box = 0.05 * (3 / model.head.nl)
self.balance = [4.0, 1.0, 0.4] # explanation.. https://github.com/ultralytics/yolov5/issues/2026
self.nc = model.head.nc
self.anchors_d = model.head.anchors.clone().detach()
self.anchors = model.head.anchors.clone().detach().to("cpu")
self.na = self.anchors.reshape(9,2).shape[0]
self.num_anchors_per_scale = self.na // 3
self.S = model.head.stride
self.ignore_iou_thresh = 0.5
self.ph = None # this variable is used in the build_targets method, defined here for readability.
self.pw = None # this variable is used in the build_targets method, defined here for readability.
self.save_logs = save_logs
self.filename = filename
if self.save_logs:
if not resume:
folder = os.path.join("train_eval_metrics", filename)
if not os.path.isdir(folder):
os.makedirs(folder)
with open(os.path.join(folder, "loss.csv"), "w") as f:
writer = csv.writer(f)
writer.writerow(["epoch", "batch_idx", "box_loss", "object_loss", "class_loss"])
print("--------------------------------------------------------------------------------------")
print(f'Training Logs will be saved in {os.path.join("train_eval_metrics", filename, "loss.csv")}')
print("--------------------------------------------------------------------------------------")
f.close()
def __call__(self, preds, targets, pred_size, batch_idx=None, epoch=None):
self.batch_idx = batch_idx
self.epoch = epoch
# list of lists --> [pred[0].height, pred[0].width, pred[1].height... etc]
targets = [self.build_targets(preds, bboxes, pred_size) for bboxes in targets]
t1 = torch.stack([target[0] for target in targets], dim=0).to(config.DEVICE,non_blocking=True)
t2 = torch.stack([target[1] for target in targets], dim=0).to(config.DEVICE,non_blocking=True)
t3 = torch.stack([target[2] for target in targets], dim=0).to(config.DEVICE,non_blocking=True)
if self.save_logs:
l1, logs1 = self.compute_loss(preds[0], t1, anchors=self.anchors_d[0], balance=self.balance[0])
l2, logs2 = self.compute_loss(preds[1], t2, anchors=self.anchors_d[1], balance=self.balance[1])
l3, logs3 = self.compute_loss(preds[2], t3, anchors=self.anchors_d[2], balance=self.balance[2])
loss = l1 + l2 + l3
freq = 100
if self.batch_idx % freq == 0:
log_losses = torch.mean(torch.cat([logs1, logs2, logs3], dim=0), dim=0)
with open(os.path.join("train_eval_metrics", self.filename, "loss.csv"), "a") as f:
writer = csv.writer(f)
writer.writerow([self.epoch, self.batch_idx, log_losses[0].item(),
log_losses[1].item(), log_losses[2].item()])
f.close()
else:
loss = (
self.compute_loss(preds[0], t1, anchors=self.anchors_d[0], balance=self.balance[0])[0]
+ self.compute_loss(preds[1], t2, anchors=self.anchors_d[1], balance=self.balance[1])[0]
+ self.compute_loss(preds[2], t3, anchors=self.anchors_d[2], balance=self.balance[2])[0]
)
return loss
def build_targets(self, input_tensor, bboxes, pred_size):
check_loss = True
if check_loss:
targets = [
torch.zeros((self.num_anchors_per_scale, input_tensor[i].shape[2],
input_tensor[i].shape[3], 6))
for i in range(len(self.S))
]
else:
targets = [torch.zeros((self.num_anchors_per_scale, int(input_tensor.shape[2]/S),
int(input_tensor.shape[3]/S), 6)) for S in self.S]
classes = bboxes[:, 0].tolist() if len(bboxes) else []
bboxes = bboxes[:, 1:] if len(bboxes) else []
for idx, box in enumerate(bboxes):
iou_anchors = iou_width_height(torch.from_numpy(box[2:4]), self.anchors)
anchor_indices = iou_anchors.argsort(descending=True, dim=0)
x, y, width, height, = box
has_anchor = [False] * 3
for anchor_idx in anchor_indices:
# i.e if the best anchor idx is 8, num_anchors_per_scale
# we know that 8//3 = 2 --> the best scale_idx is 2 -->
# best_anchor belongs to last scale (52,52)
# scale_idx will be used to slice the variable "targets"
# another pov: scale_idx searches the best scale of anchors
scale_idx = torch.div(anchor_idx, self.num_anchors_per_scale, rounding_mode="floor")
# print(scale_idx)
# anchor_on_scale searches the idx of the best anchor in a given scale
# found via index in the line below
anchor_on_scale = anchor_idx % self.num_anchors_per_scale
# slice anchors based on the idx of the best scales of anchors
if check_loss:
scale_y = input_tensor[int(scale_idx)].shape[2]
scale_x = input_tensor[int(scale_idx)].shape[3]
else:
S = self.S[scale_idx]
scale_y = int(input_tensor.shape[2] / S)
scale_x = int(input_tensor.shape[3] / S)
# S = self.S[int(scale_idx)]
# another problem: in the labels the coordinates of the objects are set
# with respect to the whole image, while we need them wrt the corresponding (?) cell
# next line idk how --> i tells which y cell, j which x cell
# i.e x = 0.5, S = 13 --> int(S * x) = 6 --> 6th cell
i, j = int(scale_y * y), int(scale_x * x) # which cell
# targets[scale_idx] --> shape (3, 13, 13, 6) best group of anchors
# targets[scale_idx][anchor_on_scale] --> shape (13,13,6)
# i and j are needed to slice to the right cell
# 0 is the idx corresponding to p_o
# I guess [anchor_on_scale, i, j, 0] equals to [anchor_on_scale][i][j][0]
# check that the anchor hasn't been already taken by another object (rare)
anchor_taken = targets[scale_idx][anchor_on_scale, i, j, 4]
# if not anchor_taken == if anchor_taken is still == 0 cause in the following
# lines will be set to one
# if not has_anchor[scale_idx] --> if this scale has not been already taken
# by another anchor which were ordered in descending order by iou, hence
# the previous ones are better
if not anchor_taken and not has_anchor[scale_idx]:
# here below we are going to populate all the
# 6 elements of targets[scale_idx][anchor_on_scale, i, j]
# setting p_o of the chosen cell = 1 since there is an object there
targets[scale_idx][anchor_on_scale, i, j, 4] = 1
# setting the values of the coordinates x, y
# i.e (6.5 - 6) = 0.5 --> x_coord is in the middle of this particular cell
# both are between [0,1]
x_cell, y_cell = scale_x * x - j, scale_y * y - i # both between [0,1]
# width = 0.5 would be 0.5 of the entire image
# and as for x_cell we need the measure w.r.t the cell
# i.e S=13, width = 0.5 --> 6.5
width_cell, height_cell = (
width * scale_x,
height * scale_y,
) # can be greater than 1 since it's relative to cell
box_coordinates = torch.tensor(
[x_cell, y_cell, width_cell, height_cell]
)
targets[scale_idx][anchor_on_scale, i, j, 0:4] = box_coordinates
targets[scale_idx][anchor_on_scale, i, j, 5] = int(classes[idx])
has_anchor[scale_idx] = True
# not understood
elif not anchor_taken and iou_anchors[anchor_idx] > self.ignore_iou_thresh:
targets[scale_idx][anchor_on_scale, i, j, 4] = -1 # ignore prediction
return targets
# TRAINING_LOSS
def compute_loss(self, preds, targets, anchors, balance):
# originally anchors have shape (3,2) --> 3 set of anchors of width and height
bs = preds.shape[0]
anchors = anchors.reshape(1, 3, 1, 1, 2)
obj = targets[..., 4] == 1
pxy = (preds[..., 0:2].sigmoid() * 2) - 0.5
pwh = ((preds[..., 2:4].sigmoid() * 2) ** 2) * anchors
pbox = torch.cat((pxy[obj], pwh[obj]), dim=-1)
tbox = targets[..., 0:4][obj]
# ======================== #
# FOR BOX COORDINATES #
# ======================== #
iou = intersection_over_union(pbox, tbox, GIoU=True).squeeze() # iou(prediction, target)
lbox = (1.0 - iou).mean() # iou loss
# ======================= #
# FOR OBJECTNESS SCORE #
# ======================= #
iou = iou.detach().clamp(0)
targets[..., 4][obj] *= iou
lobj = self.BCE_obj(preds[..., 4], targets[..., 4]) * balance
# ================== #
# FOR CLASS LOSS #
# ================== #
# NB: my targets[...,5:6]) is a vector of size bs, 1,
# ultralytics targets[...,5:6]) is a matrix of shape bs, num_classes
tcls = torch.zeros_like(preds[..., 5:][obj], device=config.DEVICE)
tcls[torch.arange(tcls.size(0)), targets[..., 5][obj].long()] = 1.0 # for torch > 1.11.0
lcls = self.BCE_cls(preds[..., 5:][obj], tcls) # BCE
return (
(self.lambda_box * lbox
+ self.lambda_obj * lobj
+ self.lambda_class * lcls) * bs,
torch.unsqueeze(
torch.stack([
self.lambda_box * lbox,
self.lambda_obj * lobj,
self.lambda_class * lcls
]), dim=0
)
if self.save_logs else None
)
if __name__ == "__main__":
check_loss = True
batch_size = 8
image_height = 640
image_width = 640
S = [8, 16, 32]
anchors = config.ANCHORS
first_out = 48
model = YOLOV5m(first_out=first_out, nc=len(config.COCO), anchors=anchors,
ch=(first_out*4, first_out*8, first_out*16), inference=False).to(config.DEVICE)
model.load_state_dict(state_dict=torch.load("yolov5m.pt"), strict=True)
dataset = Training_Dataset(num_classes=len(config.COCO),
root_directory=config.ROOT_DIR, transform=config.TRAIN_TRANSFORMS,
train=True, rect_training=True, default_size=640, bs=4, bboxes_format="coco")
yolo_loss = YOLO_LOSS(model, rect_training=dataset.rect_training)
loader = DataLoader(dataset=dataset, batch_size=4, shuffle=False if dataset.rect_training else True,
collate_fn=dataset.collate_fn)
if check_loss:
for images, bboxes in loader:
images = images/255
if not dataset.rect_training:
images = multi_scale(images, target_shape=640, max_stride=32)
preds = model(images)
start = time.time()
loss = yolo_loss(preds, bboxes, pred_size=images.shape[2:4])
print(loss)
"""torch.manual_seed(1)
images = torch.rand((4, 3, 640, 640))
#img_idx = torch.arange(4).repeat(3, 1).T.reshape(12, 1)
classes = torch.arange(4).repeat(3, 1).T.reshape(12, 1)
bboxes = torch.randint(low=0, high=50, size=(12, 4)) / 100
labels = torch.cat([bboxes, classes], dim=-1).tolist()
print(loss(model(images), labels))"""
else:
for images, bboxes in loader:
images = images / 255
if not dataset.rect_training:
images = multi_scale(images, target_shape=640, max_stride=32)
images = torch.unsqueeze(images[0], dim=0) # keep just the first img but preserving bs
bboxes = bboxes[0]
targets = yolo_loss.build_targets(images, bboxes, images[0].shape[2:4])
targets = [torch.unsqueeze(target, dim=0) for target in targets]
S = [8, 16, 32]
boxes = cells_to_bboxes(targets, torch.tensor(anchors), S, list_output=False)
boxes = nms(boxes, iou_threshold=1, threshold=0.7, max_detections=300)
plot_image(images[0].permute(1, 2, 0).to("cpu"), boxes[0])