-
Notifications
You must be signed in to change notification settings - Fork 11
/
model.py
270 lines (221 loc) · 11.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# https://www.researchgate.net/figure/YOLOv5-architecture-The-YOLO-network-consists-of-three-main-parts-Backbone-Neck-and_fig5_355962110
import time
import torch
import torch.nn as nn
from torchvision.transforms import Resize
from torchvision.transforms import InterpolationMode
import config
from utils.utils import check_size, count_parameters
# performs a convolution, a batch_norm and then applies a SiLU activation function
class CBL(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
super(CBL, self).__init__()
conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False)
bn = nn.BatchNorm2d(out_channels, eps=1e-3, momentum=0.03)
self.cbl = nn.Sequential(
conv,
bn,
# https://pytorch.org/docs/stable/generated/torch.nn.SiLU.html
nn.SiLU(inplace=True)
)
def forward(self, x):
#print(self.cbl(x).shape)
return self.cbl(x)
# which is just a residual block
class Bottleneck(nn.Module):
"""
Parameters:
in_channels (int): number of channel of the input tensor
out_channels (int): number of channel of the output tensor
width_multiple (float): it controls the number of channels (and weights)
of all the convolutions beside the
first and last one. If closer to 0,
the simpler the modelIf closer to 1,
the model becomes more complex
"""
def __init__(self, in_channels, out_channels, width_multiple=1):
super(Bottleneck, self).__init__()
c_ = int(width_multiple*in_channels)
self.c1 = CBL(in_channels, c_, kernel_size=1, stride=1, padding=0)
self.c2 = CBL(c_, out_channels, kernel_size=3, stride=1, padding=1)
def forward(self, x):
return self.c2(self.c1(x)) + x
# kind of CSP backbone (https://arxiv.org/pdf/1911.11929v1.pdf)
class C3(nn.Module):
"""
Parameters:
in_channels (int): number of channel of the input tensor
out_channels (int): number of channel of the output tensor
width_multiple (float): it controls the number of channels (and weights)
of all the convolutions beside the
first and last one. If closer to 0,
the simpler the modelIf closer to 1,
the model becomes more complex
depth (int): it controls the number of times the bottleneck (residual block)
is repeated within the C3 block
backbone (bool): if True, self.seq will be composed by bottlenecks 1, if False
it will be composed by bottlenecks 2 (check in the image linked below)
https://user-images.githubusercontent.com/31005897/172404576-c260dcf9-76bb-4bc8-b6a9-f2d987792583.png
"""
def __init__(self, in_channels, out_channels, width_multiple=1, depth=1, backbone=True):
super(C3, self).__init__()
c_ = int(width_multiple*in_channels)
self.c1 = CBL(in_channels, c_, kernel_size=1, stride=1, padding=0)
self.c_skipped = CBL(in_channels, c_, kernel_size=1, stride=1, padding=0)
if backbone:
self.seq = nn.Sequential(
*[Bottleneck(c_, c_, width_multiple=1) for _ in range(depth)]
)
else:
self.seq = nn.Sequential(
*[nn.Sequential(
CBL(c_, c_, 1, 1, 0),
CBL(c_, c_, 3, 1, 1)
) for _ in range(depth)]
)
self.c_out = CBL(c_ * 2, out_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
x = torch.cat([self.seq(self.c1(x)), self.c_skipped(x)], dim=1)
return self.c_out(x)
# Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
class SPPF(nn.Module):
def __init__(self, in_channels, out_channels):
super(SPPF, self).__init__()
c_ = int(in_channels//2)
self.c1 = CBL(in_channels, c_, 1, 1, 0)
self.pool = nn.MaxPool2d(kernel_size=5, stride=1, padding=2)
self.c_out = CBL(c_ * 4, out_channels, 1, 1, 0)
def forward(self, x):
x = self.c1(x)
pool1 = self.pool(x)
pool2 = self.pool(pool1)
pool3 = self.pool(pool2)
return self.c_out(torch.cat([x, pool1, pool2, pool3], dim=1))
# in the PANET the C3 block is different: no more CSP but a residual block composed
# a sequential branch of n SiLUs and a skipped branch with one SiLU
class C3_NECK(nn.Module):
def __init__(self, in_channels, out_channels, width, depth):
super(C3_NECK, self).__init__()
c_ = int(in_channels*width)
self.in_channels = in_channels
self.c_ = c_
self.out_channels = out_channels
self.c_skipped = CBL(in_channels, c_, 1, 1, 0)
self.c_out = CBL(c_*2, out_channels, 1, 1, 0)
self.silu_block = self.make_silu_block(depth)
def make_silu_block(self, depth):
layers = []
for i in range(depth):
if i == 0:
layers.append(CBL(self.in_channels, self.c_, 1, 1, 0))
elif i % 2 == 0:
layers.append(CBL(self.c_, self.c_, 3, 1, 1))
elif i % 2 != 0:
layers.append(CBL(self.c_, self.c_, 1, 1, 0))
return nn.Sequential(*layers)
def forward(self, x):
return self.c_out(torch.cat([self.silu_block(x), self.c_skipped(x)], dim=1))
class HEADS(nn.Module):
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
super(HEADS, self).__init__()
self.nc = nc # number of classes
self.nl = len(anchors) # number of detection layers
self.naxs = len(anchors[0])
# https://pytorch.org/docs/stable/generated/torch.nn.Module.html command+f register_buffer
# has the same result as self.anchors = anchors but, it's a way to register a buffer (make
# a variable available in runtime) that should not be considered a model parameter
self.stride = [8, 16, 32]
# anchors are divided by the stride (anchors_for_head_1/8, anchors_for_head_1/16 etc.)
anchors_ = torch.tensor(anchors).float().view(self.nl, -1, 2) / torch.tensor(self.stride).repeat(6, 1).T.reshape(3, 3, 2)
self.register_buffer('anchors', anchors_) # shape(nl,na,2)
self.out_convs = nn.ModuleList()
for in_channels in ch:
self.out_convs += [
nn.Conv2d(in_channels=in_channels, out_channels=(5+self.nc) * self.naxs, kernel_size=1)
]
def forward(self, x):
for i in range(self.nl):
# performs out_convolution and stores the result in place
x[i] = self.out_convs[i](x[i])
bs, _, grid_y, grid_x = x[i].shape
# reshaping output to be (bs, n_scale_predictions, n_grid_y, n_grid_x, 5 + num_classes)
# why .permute? Here https://github.com/ultralytics/yolov5/issues/10524#issuecomment-1356822063
x[i] = x[i].view(bs, self.naxs, (5+self.nc), grid_y, grid_x).permute(0, 1, 3, 4, 2).contiguous()
return x
class YOLOV5m(nn.Module):
def __init__(self, first_out, nc=80, anchors=(),
ch=(), inference=False):
super(YOLOV5m, self).__init__()
self.inference = inference
self.backbone = nn.ModuleList()
self.backbone += [
CBL(in_channels=3, out_channels=first_out, kernel_size=6, stride=2, padding=2),
CBL(in_channels=first_out, out_channels=first_out*2, kernel_size=3, stride=2, padding=1),
C3(in_channels=first_out*2, out_channels=first_out*2, width_multiple=0.5, depth=2),
CBL(in_channels=first_out*2, out_channels=first_out*4, kernel_size=3, stride=2, padding=1),
C3(in_channels=first_out*4, out_channels=first_out*4, width_multiple=0.5, depth=4),
CBL(in_channels=first_out*4, out_channels=first_out*8, kernel_size=3, stride=2, padding=1),
C3(in_channels=first_out*8, out_channels=first_out*8, width_multiple=0.5, depth=6),
CBL(in_channels=first_out*8, out_channels=first_out*16, kernel_size=3, stride=2, padding=1),
C3(in_channels=first_out*16, out_channels=first_out*16, width_multiple=0.5, depth=2),
SPPF(in_channels=first_out*16, out_channels=first_out*16)
]
self.neck = nn.ModuleList()
self.neck += [
CBL(in_channels=first_out*16, out_channels=first_out*8, kernel_size=1, stride=1, padding=0),
C3(in_channels=first_out*16, out_channels=first_out*8, width_multiple=0.25, depth=2, backbone=False),
CBL(in_channels=first_out*8, out_channels=first_out*4, kernel_size=1, stride=1, padding=0),
C3(in_channels=first_out*8, out_channels=first_out*4, width_multiple=0.25, depth=2, backbone=False),
CBL(in_channels=first_out*4, out_channels=first_out*4, kernel_size=3, stride=2, padding=1),
C3(in_channels=first_out*8, out_channels=first_out*8, width_multiple=0.5, depth=2, backbone=False),
CBL(in_channels=first_out*8, out_channels=first_out*8, kernel_size=3, stride=2, padding=1),
C3(in_channels=first_out*16, out_channels=first_out*16, width_multiple=0.5, depth=2, backbone=False)
]
self.head = HEADS(nc=nc, anchors=anchors, ch=ch)
def forward(self, x):
assert x.shape[2] % 32 == 0 and x.shape[3] % 32 == 0, "Width and Height aren't divisible by 32!"
backbone_connection = []
neck_connection = []
outputs = []
for idx, layer in enumerate(self.backbone):
# takes the out of the 2nd and 3rd C3 block and stores it
x = layer(x)
if idx in [4, 6]:
backbone_connection.append(x)
for idx, layer in enumerate(self.neck):
if idx in [0, 2]:
x = layer(x)
neck_connection.append(x)
x = Resize([x.shape[2]*2, x.shape[3]*2], interpolation=InterpolationMode.NEAREST)(x)
x = torch.cat([x, backbone_connection.pop(-1)], dim=1)
elif idx in [4, 6]:
x = layer(x)
x = torch.cat([x, neck_connection.pop(-1)], dim=1)
elif (isinstance(layer, C3_NECK) and idx > 2) or (isinstance(layer, C3) and idx > 2):
x = layer(x)
outputs.append(x)
else:
x = layer(x)
return self.head(outputs)
if __name__ == "__main__":
batch_size = 2
image_height = 640
image_width = 640
nc = 80
anchors = config.ANCHORS
x = torch.rand(batch_size, 3, image_height, image_width)
first_out = 48
model = YOLOV5m(first_out=first_out, nc=nc, anchors=anchors,
ch=(first_out*4, first_out*8, first_out*16), inference=False)
start = time.time()
out = model(x)
end = time.time()
assert out[0].shape == (batch_size, 3, image_height//8, image_width//8, nc + 5)
assert out[1].shape == (batch_size, 3, image_height//16, image_width//16, nc + 5)
assert out[2].shape == (batch_size, 3, image_height//32, image_width//32, nc + 5)
print("Success!")
print("feedforward took {:.2f} seconds".format(end - start))
"""count_parameters(model)
check_size(model)
model.half()
check_size(model)"""