-
Notifications
You must be signed in to change notification settings - Fork 11
/
ultralytics_loss.py
352 lines (268 loc) · 16.2 KB
/
ultralytics_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Loss functions
"""
import os
import csv
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from utils.bboxes_utils import intersection_over_union
from dataset import Training_Dataset
import config
from model import YOLOV5m
class ComputeLoss:
sort_obj_iou = False
# Compute losses
def __init__(self, model, save_logs=False, filename=None, resume=False):
device = next(model.parameters()).device # get model device
# Define criteria
self.BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([1], device=device))
self.BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([1], device=device))
# check them here (https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml)
# and here (https://github.com/ultralytics/yolov5/blob/master/utils/loss.py#L170)
# also notice that these values depend on other model attributes (https://github.com/ultralytics/yolov5/blob/master/train.py#L232)
self.lambda_class = 0.5 * (model.head.nc / 80 * 3 / model.head.nl)
self.lambda_obj = 1 * ((config.IMAGE_SIZE / 640) ** 2 * 3 / model.head.nl)
self.lambda_box = 0.05 * (3 / model.head.nl)
self.anchor_t = 4.0
self.balance = [4.0, 1.0, 0.4] # explanation.. https://github.com/ultralytics/yolov5/issues/2026
self.na = model.head.naxs # number of anchors
self.nc = model.head.nc # number of classes
self.nl = model.head.nl # number of layers
self.anchors = model.head.anchors
self.device = device
self.save_logs = save_logs
self.filename = filename
if self.save_logs:
if not resume:
folder = os.path.join("train_eval_metrics", filename)
if not os.path.isdir(folder):
os.makedirs(folder)
with open(os.path.join(folder, "loss.csv"), "w") as f:
writer = csv.writer(f)
writer.writerow(["epoch", "batch_idx", "box_loss", "object_loss", "class_loss"])
print("--------------------------------------------------------------------------------------")
print(f'Training Logs will be saved in {os.path.join("train_eval_metrics", filename, "loss.csv")}')
print("--------------------------------------------------------------------------------------")
f.close()
def __call__(self, p, targets, pred_size, batch_idx=None, epoch=None): # predictions, targets
# pred_size is not used but needs to be declared due to train_loop design
targets = targets.to(config.DEVICE, non_blocking=True)
lcls = torch.zeros(1, device=self.device) # class loss
lbox = torch.zeros(1, device=self.device) # box loss
lobj = torch.zeros(1, device=self.device) # object loss
tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets
# Losses
for i, pi in enumerate(p): # layer index, layer predictions
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
n = b.shape[0] # number of targets
if n:
# pxy, pwh, _, pcls = pi[b, a, gj, gi].tensor_split((2, 4, 5), dim=1) # faster, requires torch 1.8.0
pxy, pwh, _, pcls = pi[b, a, gj, gi].split((2, 2, 1, self.nc), 1) # target-subset of predictions
# Regression
pxy = pxy.sigmoid() * 2 - 0.5
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
pbox = torch.cat((pxy, pwh), 1) # predicted box
iou = intersection_over_union(pbox, tbox[i], GIoU=True).squeeze() # iou(prediction, target)
lbox += (1.0 - iou).mean() # iou loss
# Objectness
iou = iou.detach().clamp(0).type(tobj.dtype)
tobj[b, a, gj, gi] = iou # iou ratio
# Classification
if self.nc > 1: # cls loss (only if multiple classes)
t = torch.zeros_like(pcls, device=self.device) # targets
t[range(n), tcls[i]] = 1
lcls += self.BCEcls(pcls, t) # BCE
# Append targets to text file
# with open('targets.txt', 'a') as file:
# [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
obji = self.BCEobj(pi[..., 4], tobj)
lobj += obji * self.balance[i] # obj loss
lbox *= self.lambda_box
lobj *= self.lambda_obj
lcls *= self.lambda_class
if self.save_logs:
freq = 100
if batch_idx % freq == 0:
with open(os.path.join("train_eval_metrics", self.filename, "loss.csv"), "a") as f:
writer = csv.writer(f)
writer.writerow([epoch, batch_idx, lbox.item(),
lobj.item(), lcls.item()])
f.close()
bs = tobj.shape[0] # batch size
# print((lbox + lobj + lcls) * bs)
return (lbox + lobj + lcls) * bs
def build_targets(self, p, targets):
# Build targets for compute_loss(), input targets(image,class,x,y,w,h),
# where "image" is the idx of the image in the batch: i.e. if batch_size is 4,
# and all the images contain at least 1 target, the value of "image" will be 0,1,2,3
na, nt = self.na, targets.shape[0] # number of anchors (x scale), targets
tcls, tbox, indices, anch = [], [], [], []
gain = torch.ones(7, device=self.device) # normalized to grid_space gain
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
# torch.arange(na, device=self.device) i.e --> tensor([0, 1, 2]), shape 3
# torch.arange(na, device=self.device).float().view(na, 1) --> tensor([[0.], [1.], [2.]]), shape (3, 1)
# torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) --> shape (3, 84), in words,
# ai[0,:] repets for n_detections (here 84) times 0, ai[1,:] repets for n_detections (here 84) times 1, etc.
# ai.shape --> (na,nt) --> i.e. (3, 84)
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) # append anchor indices
# shape of "targets" before this line is (n_gt_detections, 6) where 6 are (image,class,x,y,w,h)
# targets.repeat(na, 1, 1) has shape (num anchors (x scale ?), n_gt_detections, 6) i.e. (3, 84, 6)
# and torch.equal(targets.repeat(na, 1, 1)[0,:], targets.repeat(na, 1, 1)[1,:]) and
# torch.equal(targets.repeat(na, 1, 1)[0,:], targets.repeat(na, 1, 1)[2,:]) return true
# ai[..., None] has shape (na, nt, 1), i.e. (3, 84, 1)
# torch.cat((targets.repeat(na, 1, 1), ai[..., None]), 2) we can the two tensors along the last dim (2) and
# we get a (na, nt, 7) tensor, i.e. (3, 84, 7)
g = 0.5 # bias
# off.shape --> (5,2)
off = torch.tensor(
[
[0, 0],
[1, 0],
[0, 1],
[-1, 0],
[0, -1], # j,k,l,m
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
],
device=self.device).float() * g # offsets
# for each detection layer...
for i in range(self.nl):
# we get the anchors and the predictions shape of the i-eme detection layer
anchors, shape = self.anchors[i], p[i].shape
# anchors shape (na x scale,2), i.e (3,2) -- shape.shape i.e. (8, 3, 80, 80, 85)
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
# we set these values of the gain variable as the third,
# second, third and second values of the shape matrix i.e. (80, 80, 80, 80)
# "gain" will now look like this: tensor([ 1., 1., 80., 80., 80., 80., 1.])
t = targets * gain # shape(3,n,7)
# Match targets to anchors
# targets.shape (3, 82, 7), gain.shape (7), t.shape (3, 82, 7)
# where the 7 in dim=2 are (image,class,x,y,w,h, detection_layer_idx) and
# targets * gain multiply x,y,w,h times w,h,w,h of the detection_layer
# if there are predictions (n predicted bboxes > 0)
if nt:
# Matches
r = t[..., 4:6] / anchors[:, None] # wh ratio
# t.shape is (na, n_gt_boxes, 7)
# anchors[:, None].shape is (na x scale, 1, 2), i.e. (3,1,2)
# so this operation is the ratio between the w, h (that after t = targets * gain are
# representing w,h in terms of "grid blocks") and anchors
# r.shape is (na, n_gt_boxes, 2) and "r" represents for each detection the number of times
# a given anchor should be multiplied to explain its height/width
j = torch.max(r, 1 / r).max(2)[0] < self.anchor_t # compare
# torch.max(r, 1 / r) has shape (na, n_gt_boxes, 2) and returns the max between
# each element of the last dimension
# torch.max(r, 1 / r).max(2) returns torch.return_type.max variable and to
# access the output tensor you have to subset the first element with torch.max(r, 1 / r).max(2)[0]
# torch.max(r, 1 / r).max(2)[0] has shape (na, n_gt_boxes) i.e. (3, 84).
# The last dimension has "disappeared" because .max(2) just picks the maximum
# element over the last dimension
# torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] has shape (na, n_gt_boxes) i.e. (3, 84)
# and is a boolean. What is self.hyp['anchor_t']? Check here below:
# https://github.com/ultralytics/yolov5/issues/1310#issuecomment-723035010
# So according to Glen, "j are target-anchor match candidates."
t = t[j] # filter
# t.shape (na (xs?), n_gt_detections, 7) i.e. (3, 84, 7)
# j.shape (na (xs?), n_gt_detections) i.e. (3, 84)
# t[j] (?!) shape (93, 7), which means that some gt_detections might require
# more set of anchors because they are borderline???
# Offsets
gxy = t[:, 2:4] # grid xy
# t[:, 2:4]. shape i.e (93, 2)
gxi = gain[[2, 3]] - gxy # inverse
# gain.shape is 2 i.e. 80, 80 --- gxy shape i.e. (93, 2)
# gxi.shape == gxy.shape
# rescale/shift the x, y coordinates, why? and to get what?
# in the following lines we are taking care of what specified here:
# https://github.com/ultralytics/yolov5/issues/6863
j, k = ((gxy % 1 < g) & (gxy > 1)).T
# (gxy % 1 < g) returns a boolean, true if the x/y grid-coordinate divided by 1 is less than g (0.5)
# false otherwise
# (gxy > 1) return a boolean, true if the x/y grid-coord is > 1, false otherwise
# ((gxy % 1 < g) & (gxy > 1)) has shape i.e. (93, 2) and is a boolean, returning true if the conditions
# specified above are both true, false otherwise
# ((gxy % 1 < g) & (gxy > 1)).T has shape i.e. (2, 93) and we assign each line to the variables "j", "k"
# "j" and "k" represent the condition w.r.t. the x and y variable
l, m = ((gxi % 1 < g) & (gxi > 1)).T
# exact same process but with the inverse x,y matrix
j = torch.stack((torch.ones_like(j), j, k, l, m))
# j.shape i.e. (5, 93), first row are all ones, and the other rows are the booleans defined above
t = t.repeat((5, 1, 1))[j]
# before this line t.shape was i.e. (93, 7),
# t.repeat((5, 1, 1)) has shape (5, 93, 7)
# j, define the line above, has shape i.e. (5, 93)
# t.repeat((5, 1, 1))[j] has shape i.e. (276, 7)
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
# torch.zeros_like(gxy)[None].shape i.e. (1, 93, 2)
# off[:, None] i.e (5, 1, 2)
# (torch.zeros_like(gxy)[None] + off[:, None]) shape i.e. (5, 93, 2)
# (torch.zeros_like(gxy)[None] + off[:, None])[j] shape i.e. (276, 2)
else:
# if the batch has no gt_detections
t = targets[0]
offsets = 0
# Define
bc, gxy, gwh, a = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
# t.shape is i.e. (276, 7)
# tensor.chunk --> https://pytorch.org/docs/stable/generated/torch.chunk.html
# t.chunk(4, 1)[0].shape i.e. (276,2), t.chunk(4, 1)[1].shape i.e. (276,2),
# t.chunk(4, 1)[2].shape i.e. (276,2) ,t.chunk(4, 1)[3].shape i.e. (276, 1)
# in other words, it splits the tensor into 4 tensors over the dim=1
a, (b, c) = a.long().view(-1), bc.long().T # anchors, image, class
# a.long().view(-1).shape i.e. (276)
# bc.long().T.shape i.e. (2, 276), hence each row assigned to (b, c) accordingly
gij = (gxy - offsets).long()
# gxy and offsets of shape i.e. (276, 2)
gi, gj = gij.T # grid indices
# gij.T.shape i.e. (2, 276) hence each row assigned to gi, gj accordingly
# Append
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
# b.shape i.e. (276)
# a.shape i.e. (276)
# torch.tensor.clamp_ is inplace version of clamp (to save up ram usage)
# each element of the i.e. (276) vector is clipped to 0 if value is less than 0 and
# clipped to i.e. shape[2] - 1 if value is greater than it.
# gj.clamp_(0, shape[2] - 1).shape i.e. (276)
# gi.clamp_(0, shape[3] - 1).shape i.e. (276)
# (b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1)) is a tuple of len(4)
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
# gxy - gij have both shape i.e. (276, 2)
# gwh.shape is i.e. (276, 2)
# torch.cat((gxy - gij, gwh), 1).shape is i.e. (276, 4)
anch.append(anchors[a]) # anchors
# anchors.shape is i.e. (3, 2)
# a.shape is i.e. (276)
# anchors[a].shape is i.e. (276, 2)
tcls.append(c) # class
# c.shape is i.e. 276
# len(tcls) == len(tbox) == len(indices) == len(anch) == nt (usally 3)
return tcls, tbox, indices, anch
if __name__ == "__main__":
check_loss = True
batch_size = 8
image_height = 640
image_width = 640
nc = len(config.COCO80)
S = [8, 16, 32]
anchors = config.ANCHORS
first_out = 48
model = YOLOV5m(first_out=first_out, nc=nc, anchors=anchors,
ch=(first_out * 4, first_out * 8, first_out * 16), inference=False).to(config.DEVICE)
model.load_state_dict(state_dict=torch.load("yolov5m_coco.pt"), strict=True)
loss_fn = ComputeLoss(model, save_logs=False, filename="none")
"""dataset = MY_AUG_MS_COCO_2017(num_classes=nc, anchors=config.ANCHORS,
root_directory=config.ROOT_DIR, transform=None,
train=True, S=S, rect_training=True, default_size=640, bs=4,
bboxes_format="coco")"""
dataset = Training_Dataset(num_classes=nc, root_directory=config.ROOT_DIR, transform=None,
train=True, rect_training=True, default_size=640, bs=8,
bboxes_format="coco", ultralytics_loss=True)
collate_fn = dataset.collate_fn_ultra if dataset.ultralytics_loss else dataset.collate_fn
loader = DataLoader(dataset=dataset, batch_size=8, shuffle=False if dataset.rect_training else True, collate_fn=collate_fn)
for images, bboxes in loader:
images = images.float() / 255
preds = model(images)
loss = loss_fn(preds, bboxes, pred_size=images.shape[2:4], batch_idx=None, epoch=None)
print(loss)