-
Notifications
You must be signed in to change notification settings - Fork 31
/
4_0_runExps.lua
716 lines (658 loc) · 40.3 KB
/
4_0_runExps.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
#!~/torch/install/bin/th
require 'image'
require 'nn'
require '2_2_Sampler'
require 'cutorch'
require 'cunn'
require 'nngraph'
require 'gnuplot'
local commonFuncs = require '0_commonFuncs'
local sampleManifold = require '3_sampleManifold'
if pcall(require, 'cudnn') then
require 'cudnn'
end
trainDataFiles, validationDataFiles, testDataFiles = commonFuncs.obtainDataPath(opt.benchmark, opt.testPhase, true)
local allData = {}
allData[1] = trainDataFiles
allData[2] = validationDataFiles
allData[3] = testDataFiles
local currentModelDirName = (opt.expType == 'random' or opt.expType == 'conditionalSample') and 'samples' or opt.expType == 'interpolate' and 'interpolation' or opt.expType == 'forwardPass' and 'forwardPass'
local experimentResultOutputPath = string.format('%s/experiments/%s/', paths.cwd() ..'/' .. opt.modelDirName, (opt.fromEpoch > 0 and 'epoch' .. opt.fromEpoch or ''))
local modelPath = string.format('%s/model/%s/model.t7', paths.cwd() ..'/' .. opt.modelDirName, (opt.fromEpoch > 0 and 'epoch' .. opt.fromEpoch or ''))
--Path to load the empirical distribution
local meanLogVarPath = string.format('%s/model/%s/mean_logvar.t7', paths.cwd() ..'/' .. opt.modelDirName, (opt.fromEpoch > 0 and 'epoch' .. opt.fromEpoch or ''))
if not paths.filep(meanLogVarPath) then
meanLogVarPath = nil
end
local gMod = torch.load(modelPath) -- Load the model
gMod = gMod:cuda()
if cudnn then
cudnn.convert(gMod, cudnn)
end
gMod:evaluate()
local model = gMod:get(1) -- Use the training model
print ''
if opt.expType == 'randomSampling' then
print ("==> Configurations, modelDirName: " .. opt.modelDirName .. ", No. Latents: " .. opt.nLatents .. ", Batch Size: " .. opt.batchSize .. ", Batch Size (BS) Change Epoch: " .. opt.batchSizeChangeEpoch .. ", BS Change: " .. opt.batchSizeChange .. ", Target BS: " .. opt.targetBatchSize .. ", Output Fea. Maps: " .. opt.nCh .. ", LR Decay: " .. opt.lrDecay .. ", Learning Rate: " .. opt.lr .. ", InitialLR: " .. opt.initialLR .. ", KLD Grad. Coeff:" .. opt.KLD .. ", Tanh: " .. (opt.tanh and "True" or "False") .. ', DropoutNet: ' .. (opt.dropoutNet and "True" or "False") .. ', KeepVP: ' .. opt.VpToKeep .. ', silhouetteInput: ' .. (opt.silhouetteInput and "True" or "False") .. ', singleVPNet: ' .. (opt.singleVPNet and "True" or "False") .. ', conditional: ' .. (opt.conditional and "True" or "False") .. ', From Epoch: ' .. opt.fromEpoch)
print ('==> Generating ' .. (opt.conditional and 'conditional' or '') .. ' random samples')
print ("==> The results will be stored at '" .. experimentResultOutputPath .. (opt.conditional and 'conditionalSamples' or 'randomSamples') .. (meanLogVarPath and '-empirical' or string.format('-Mean_%.2f-Var_%.2f', opt.mean, opt.var)) .. "'")
if opt.conditional then
if opt.benchmark then
data = torch.load(validationDataFiles[torch.random(1, #validationDataFiles)])
else
data = torch.load(allData[2][torch.random(1, #allData[2])]) -- Choose one file randomly chosen from the validation/test set
local tempData = torch.load(allData[3][torch.random(1, #allData[3])]) -- Choose one randomly from the test set
-- Concatenate the two data sets tensors
data.labels = torch.cat(data.labels, tempData.labels, 1)
data.dataset = torch.cat(data.dataset, tempData.dataset, 1)
tempData.labels = nil
tempData.dataset = nil
tempData = nil
end
end
local sampleZembeddings = meanLogVarPath and torch.load(meanLogVarPath) or nil -- If the mean_logvar.t7 file does not exist on
sampleManifold.sample(opt.manifoldExp, opt.sampleCategory, opt.canvasHW, opt.nSamples, data, model, experimentResultOutputPath, opt.mean, opt.var, opt.nLatents, opt.imgSize, opt.numVPs, opt.fromEpoch, opt.batchSize, opt.targetBatchSize, opt.testPhase, opt.tanh, opt.dropoutNet, opt.VpToKeep, opt.silhouetteInput, sampleZembeddings, opt.singleVPNet, opt.conditional, opt.expType, opt.benchmark)
print ('==> Finshed drawing ' .. (opt.conditional and 'conditional' or '') .. ' random samples')
elseif opt.expType == 'interpolation' then
print ("==> Configurations, modelDirName: " .. opt.modelDirName .. ", No. Latents: " .. opt.nLatents .. ", Batch Size: " .. opt.batchSize .. ", Batch Size (BS) Change Epoch: " .. opt.batchSizeChangeEpoch .. ", BS Change: " .. opt.batchSizeChange .. ", Target BS: " .. opt.targetBatchSize .. ", Output Fea. Maps: " .. opt.nCh .. ", LR Decay: " .. opt.lrDecay .. ", Learning Rate: " .. opt.lr .. ", InitialLR: " .. opt.initialLR .. ", KLD Grad. Coeff:" .. opt.KLD .. ", Tanh: " .. (opt.tanh and "True" or "False") .. ', DropoutNet: ' .. (opt.dropoutNet and "True" or "False") .. ', KeepVP: ' .. opt.VpToKeep .. ', silhouetteInput: ' .. (opt.silhouetteInput and "True" or "False") .. ', singleVPNet: ' .. (opt.singleVPNet and "True" or "False") .. ', conditional: ' .. (opt.conditional and "True" or "False") .. ', From Epoch: ' .. opt.fromEpoch)
print ("==> Running the interpolation experiment")
print ("==> The results will be stored at '" .. experimentResultOutputPath .. "'")
if opt.benchmark then
data = torch.load(validationDataFiles[1])
else
data = torch.load(allData[2][torch.random(1, #allData[2])]) -- Choose one randomly from the validation set
local tempData = torch.load(allData[3][torch.random(1, #allData[3])]) -- Choose one randomly from the test set
-- Concatenate the two data sets tensors
data.labels = torch.cat(data.labels, tempData.labels, 1)
data.dataset = torch.cat(data.dataset, tempData.dataset, 1)
tempData.labels = nil
tempData.dataset = nil
tempData = nil
end
sampleManifold.sample(opt.manifoldExp, opt.sampleCategory, opt.canvasHW, opt.nSamples, data, model, experimentResultOutputPath, opt.mean, opt.var, opt.nLatents, opt.imgSize, opt.numVPs, opt.fromEpoch, opt.batchSize, opt.targetBatchSize, opt.testPhase, opt.tanh, opt.dropoutNet, opt.VpToKeep, opt.silhouetteInput, sampleZembeddings, opt.singleVPNet, opt.conditional, opt.expType, opt.benchmark)
print ('==> Finshed running doing interpolation ')
elseif opt.expType == 'forwardPass' then
print ("==> Configurations, modelDirName: " .. opt.modelDirName .. ", No. Latents: " .. opt.nLatents .. ", Batch Size: " .. opt.batchSize .. ", Batch Size (BS) Change Epoch: " .. opt.batchSizeChangeEpoch .. ", BS Change: " .. opt.batchSizeChange .. ", Target BS: " .. opt.targetBatchSize .. ", Output Fea. Maps: " .. opt.nCh .. ", LR Decay: " .. opt.lrDecay .. ", Learning Rate: " .. opt.lr .. ", InitialLR: " .. opt.initialLR .. ", KLD Grad. Coeff:" .. opt.KLD .. ", Tanh: " .. (opt.tanh and "True" or "False") .. ', DropoutNet: ' .. (opt.dropoutNet and "True" or "False") .. ', KeepVP: ' .. opt.VpToKeep .. ', silhouetteInput: ' .. (opt.silhouetteInput and "True" or "False") .. ', singleVPNet: ' .. (opt.singleVPNet and "True" or "False") .. ', conditional: ' .. (opt.conditional and "True" or "False") .. ', From Epoch: ' .. opt.fromEpoch)
print ("==> Doing forward pass for the '" .. opt.forwardPassType .. "' experiment.")
if opt.forwardPassType == 'userData' then
if not paths.dirp('ExtraData/userData') then
print ('==> Please first copy your images (single view depth maps or silhouettes placed, roughly, in the middle an image of size 224 x 224) to ExtraData/userData')
os.exit()
end
local data = torch.load(testDataFiles[1])
print ("==> Doing reconstruction for the silhouettes/depth maps of user's choice")
experimentResultOutputPath = experimentResultOutputPath .. 'userData'
print ("==> The results will be stored at '" .. experimentResultOutputPath .. "'")
local dataTensor = commonFuncs.loadExtraData('ExtraData/userData', opt.forwardPassType, opt.numVPs, opt.silhouetteInput)
for i=1, dataTensor:size(1) do
image.save(string.format('test%d.png', i), dataTensor[i])
end
for i=1, dataTensor:size(1) do
dataTensor = dataTensor:cuda()
local tempTensor = torch.cat(dataTensor[{{i}}], dataTensor[{{i}}], 1)
if opt.conditional then
-- Use the predicted classes to do the reconstruction
local mean, log_var, predictedClassScores = unpack(model:get(2):forward(tempTensor))
local predClassVec = commonFuncs.computeClassificationAccuracy(predictedClassScores, nil, true, predictedClassScores:size(2))
recon = model:get(4+(opt.conditional and 1 or 0)):forward({nn.Sampler():cuda():forward({mean, log_var}), predClassVec})
_, temp = predClassVec:max(2)
else
recon = unpack(model:forward(tempTensor))
end
local outputPath = experimentResultOutputPath .. '/model' .. i .. (opt.conditional and '-predictedClass-' .. data.category[temp[1][1]] or '-userData')
paths.mkdir(outputPath .. '/mask')
image.save(outputPath .. '/x-originalInputImage.png', tempTensor[1][1])
for k=1, recon[1]:size(2) do
image.save(outputPath .. '/file' .. i*6-3 .. '-img' .. i .. '-' .. k-1 .. '-rec.png', recon[1][1][k])
image.save(outputPath .. '/mask/file' .. i*6-3 .. '-img' .. i .. '-' .. k-1 .. '-rec.png', recon[2][1][k])
end
end
print ("==> Finished doing forwardPass for user's images")
elseif opt.forwardPassType == 'nyud' then
if not opt.singleVPNet then
print '==> You cannot do the NYUD experiment with DropoutNet or AllVPNet.'
os.exit()
end
print('==> Doing forward pass on the NYUD data set')
print("==> The results will be stored at '" .. experimentResultOutputPath .. 'nyud' .. "'")
experimentResultOutputPath = {experimentResultOutputPath}
experimentResultOutputPath[1] = experimentResultOutputPath[1] .. '/nyud/chair'
local dataPaths = {'ExtraData/nyud/chair'}
local dirText = {'chair'}
local data = torch.load(testDataFiles[1])
for j=1, #experimentResultOutputPath do
local originalDataTensorTable = commonFuncs.loadExtraData(dataPaths[j], opt.forwardPassType, opt.numVPs)
if opt.silhouetteInput then
local dataTensor = originalDataTensorTable[2]
-- for i=1, originalDataTensorTable[1]:size(1) do
for i=130, 130 do
for k=1, 54 do
dataTensor = dataTensor:cuda()
local inputTensor = torch.cat(dataTensor[{{i}}], dataTensor[{{i}}], 1)
if opt.conditional then
-- Use the predicted classes to do the reconstruction
local mean, log_var, predictedClassScores = unpack(model:get(2):forward(inputTensor))
local predClassVec = commonFuncs.computeClassificationAccuracy(predictedClassScores, nil, true, predictedClassScores:size(2))
predClassVec:zero()
predClassVec[{{}, {k}}]:fill(1)
recon = model:get(4+(opt.conditional and 1 or 0)):forward({nn.Sampler():cuda():forward({mean, log_var}), predClassVec})
_, temp = predClassVec:max(2)
-- print (data.category[temp[1][1]]) os.exit()
else
recon = unpack(model:forward(inputTensor))
end
local outputPath = experimentResultOutputPath[j] .. '/model' .. i .. (opt.conditional and '-predictedClass-' .. data.category[temp[1][1]] or '')
paths.mkdir(outputPath .. '/mask')
image.save(outputPath .. '/x-originalSilhouette-Input.png', inputTensor[1][1])
image.save(outputPath .. '/x-originalDepth.png', originalDataTensorTable[1][i][1])
image.save(outputPath .. '/x-originalRGB.png', originalDataTensorTable[3][i])
for k=1, recon[1]:size(2) do
image.save(outputPath .. '/file' .. i .. '-img' .. i .. '-' .. k-1 .. '-rec.png', recon[1][1][k])
image.save(outputPath .. '/mask/file' .. i .. '-img' .. i .. '-' .. k-1 .. '-rec.png', recon[2][1][k])
end
end
end
else
local depthTensor = originalDataTensorTable[1]
-- for i=1, originalDataTensorTable[1]:size(1) do
for i=130, 130 do
for k=1, 54 do
depthTensor = depthTensor:cuda()
local inputTensor = torch.cat(depthTensor[{{i}}], depthTensor[{{i}}], 1)
if opt.conditional then
-- Use the predicted classes to do the reconstruction
local mean, log_var, predictedClassScores = unpack(model:get(2):forward(inputTensor))
local predClassVec = commonFuncs.computeClassificationAccuracy(predictedClassScores, nil, true, opt.benchmark and 40 or 54)
predClassVec:zero()
predClassVec[{{}, {k}}]:fill(1)
recon = model:get(4+(opt.conditional and 1 or 0)):forward({nn.Sampler():cuda():forward({mean, log_var}), predClassVec})
_, temp = predClassVec:max(2)
print (data.category[temp[1][1]]) os.exit()
else
recon = unpack(model:forward(inputTensor))
end
local outputPath = experimentResultOutputPath[j] .. '/model' .. i .. (opt.conditional and '-predictedClass-' .. data.category[temp[1][1]] or '')
paths.mkdir(outputPath .. '/mask')
image.save(outputPath .. '/x-originalDepth-Input.png', inputTensor[1][1])
image.save(outputPath .. '/x-originalSilhouette.png', originalDataTensorTable[2][i][1])
image.save(outputPath .. '/x-originalRGB.png', originalDataTensorTable[3][i])
for k=1, recon[1]:size(2) do
image.save(outputPath .. '/file' .. i .. '-img' .. i .. '-' .. k-1 .. '-rec.png', recon[1][1][k])
image.save(outputPath .. '/mask/file' .. i .. '-img' .. i .. '-' .. k-1 .. '-rec.png', recon[2][1][k])
end
end
end
end
end
print ("==> Finished doing forward pass for the NYUD data set")
elseif opt.forwardPassType == 'randomReconstruction' then
print ('==> Reconstructing randomly-chosen samples from the test/validation set')
experimentResultOutputPath = experimentResultOutputPath .. 'reconstruction'
print("==> The results will be stored at '" .. experimentResultOutputPath)
if not opt.benchmark then
data = torch.load(allData[2][torch.random(1, #allData[2])]) -- Choose one randomly from the validation/test set
local tempData = torch.load(allData[3][torch.random(1, #allData[3])]) -- Choose one randomly from the test set
-- Concatenate the two data sets tensors
data.labels = torch.cat(data.labels, tempData.labels, 1)
data.dataset = torch.cat(data.dataset, tempData.dataset, 1)
tempData.labels = nil
tempData.dataset = nil
tempData = nil
else
data = torch.load(allData[2][1])
end
local indicesToChoose = torch.randperm(data.dataset:size(1))
indicesToChoose = indicesToChoose[{{1, opt.nReconstructions}}]:long() -- Do not use very large opt.nReconstructions
local depthMaps = data.dataset:index(1, indicesToChoose)
local labels = data.labels:index(1, indicesToChoose)
depthMaps = depthMaps:cuda()
local silhouettes = depthMaps:clone()
if opt.tanh then
silhouettes[silhouettes:gt(-1)] = 1
silhouettes[silhouettes:eq(-1)] = 0
else
silhouettes[silhouettes:gt(0)] = 1
end
for i=1, opt.nReconstructions do
local numOfVPsToDrop = torch.zeros(1) -- A placeholder to hold the number of view points to be dropped for the current category
local dropIndices = torch.zeros(opt.numVPs) -- A placeholder to hold the indices of the tensor to be zeroed-out -- Used for dropoutNet
local pickedVPs = torch.Tensor(2) -- A placeholder to hold the view point to be kept -- Used for singleVPNet
if opt.VpToKeep >= opt.numVPs then
pickedVPs[1] = torch.random(1, opt.numVPs)
pickedVPs[2] = pickedVPs[1]
else
pickedVPs[1] = opt.VpToKeep
pickedVPs[2] = opt.VpToKeep
end
local tempDepthImg = torch.cat(depthMaps[{{i}}], depthMaps[{{i}}], 1) -- This resolve the batch normalization issue
local tempSilImg = torch.cat(silhouettes[{{i}}], silhouettes[{{i}}], 1) -- This resolve the batch normalization issue
droppedInputs = commonFuncs.dropInputVPs({tempDepthImg, tempSilImg}, true, opt.dropoutNet, numOfVPsToDrop, dropIndices, opt.singleVPNet, pickedVPs)
local cat = data.category[labels[i]]
local networkInput = {}
for j=1, 2 do -- j == 1 for depth maps and j == 2 for silhouettes
local temp = droppedInputs[j][{{1}}]:clone()
temp = torch.cat(temp, temp, 1)
networkInput[j] = temp
end
if opt.conditional then
-- Use the predicted classes to do the reconstruction
local mean, log_var, predictedClassScores = unpack(model:get(2):forward(opt.silhouetteInput and networkInput[2] or networkInput[1]))
local predClassVec = commonFuncs.computeClassificationAccuracy(predictedClassScores, nil, true, predictedClassScores:size(2))
recon = model:get(4+(opt.conditional and 1 or 0)):forward({nn.Sampler():cuda():forward({mean, log_var}), predClassVec})
else
recon = unpack(model:forward(opt.silhouetteInput and networkInput[2] or networkInput[1]))
end
local reconPath = experimentResultOutputPath .. '/test/' .. '/' .. cat .. '/model' .. i .. (opt.dropoutNet and 'VPs' .. (opt.numVPs - numOfVPsToDrop[1]) or opt.singleVPNet and 'VP' .. pickedVPs[1] or '') .. '-' .. cat
paths.mkdir(reconPath .. '/mask')
for k=1, recon[1]:size(2) do
image.save(reconPath .. '/file' .. i .. '-img' .. i .. '-' .. k-1 .. '-rec.png', recon[1][1][k])
image.save(reconPath .. '/mask/file' .. i .. '-img' .. i .. '-' .. k-1 .. '-rec.png', recon[2][1][k])
-- Save the original depth maps and silhouettes (marked on their top-right corner)
image.save(reconPath .. '/file' .. i .. '-img' .. i .. '-' .. k-1 .. '-or.png', tempDepthImg[1][k])
image.save(reconPath .. '/mask/file' .. i .. '-img' .. i .. '-' .. k-1 .. '-or.png', tempSilImg[1][k])
end
end
elseif opt.forwardPassType == 'reconstructAllSamples' then
cr1 = nn.AbsCriterion()
cr1.sizeAverage = false
cr2 = nn.AbsCriterion()
cr2.sizeAverage = false
criterion = nn.ParallelCriterion():add(cr1):add(cr2)
criterion = criterion:cuda()
local tic = torch.tic()
local flag = false
print('==> Reconstructing all samples in training and validation/test sets' .. (opt.singleVPNet and opt.allViewsExp and ' for all ' .. opt.numVPs .. ' views' or ''))
experimentResultOutputPath = experimentResultOutputPath .. (opt.singleVPNet and opt.allViewsExp and 'AllSamplesReconstruction-Views' or 'AllSamplesReconstruction')
print("==> The results will be stored at '" .. experimentResultOutputPath)
for t=2, 2 do -- t == 1 does the reconstruction for the training set and t == 2 for the test set
for l=1, opt.singleVPNet and opt.allViewsExp and opt.numVPs or 1 do
local silErr = 0
local depthMapErr = 0
local totalError = 0
local classAccuracy = 0
local numSamples = 0
local counter = 1
print ('==> Doing reconstruction for the ' .. (t==1 and 'training' or 'test') .. ' set' .. (opt.singleVPNet and opt.allViewsExp and (' for view ' .. l) or ''))
if t == 1 then
dataFilePaths = allData[1]
elseif flag == false then
flag = true
if opt.benchmark then
dataFilePaths = allData[2]
else
dataFilePaths = commonFuncs.tableConcat(allData[2], allData[3])
end
end
for i=1, #dataFilePaths do
print (' ==> Storing the reconstruction results for file ' .. i .. '/' .. #dataFilePaths)
data = torch.load(dataFilePaths[i])
numSamples = numSamples + data.dataset:size(1)
for j=1, data.dataset:size(1) do
-- Create hot vectors for training conditional models
if opt.conditional then
targetClassIndices = data.labels[{{j}}]
targetClassIndices = torch.cat(targetClassIndices, targetClassIndices, 1):cuda()
end
local numOfVPsToDrop = torch.zeros(1) -- A placeholder to hold the number of view points to be dropped (use for DropoutNet)
local dropIndices = torch.zeros(opt.numVPs) -- A placeholder to hold the indices of the tensor to be zeroed-out -- Used for dropoutNet
local pickedVPs = torch.Tensor(2) -- A placeholder to hold the view point to be kept -- Used for singleVPNet
if not opt.allViewsExp and opt.VpToKeep >= numVPs then
pickedVPs[1] = torch.random(1, opt.numVPs)
pickedVPs[2] = pickedVPs[1]
else
pickedVPs[1] = opt.singleVPNet and opt.allViewsExp and l or opt.VpToKeep
pickedVPs[2] = opt.singleVPNet and opt.allViewsExp and l or opt.VpToKeep
end
local depthMaps = data.dataset[{{j}}]:cuda()
local catLabel = data.category[data.labels[j]]
depthMaps = torch.cat(depthMaps, depthMaps, 1)
local silhouettes = depthMaps:clone()
if opt.tanh then
silhouettes[silhouettes:gt(-1)] = 1
silhouettes[silhouettes:eq(-1)] = 0
else
silhouettes[silhouettes:gt(0)] = 1
end
local droppedInputs = commonFuncs.dropInputVPs({depthMaps, silhouettes}, true, opt.dropoutNet, numOfVPsToDrop, dropIndices, opt.singleVPNet, pickedVPs)
local tempTensor = opt.silhouetteInput and droppedInputs[2] or droppedInputs[1]
local tempNoisyInput = tempTensor[tempTensor:gt(0)]
tempTensor[tempTensor:gt(0)] = tempNoisyInput:add(torch.rand(tempNoisyInput:size()):div(100):cuda())
if opt.conditional then
-- Use the predicted classes to do the reconstruction
local mean, log_var, predictedClassScores = unpack(model:get(2):forward(opt.silhouetteInput and droppedInputs[2] or droppedInputs[1]))
local predClassVec = commonFuncs.computeClassificationAccuracy(predictedClassScores, nil, true, predictedClassScores:size(2))
recon = model:get(4+(opt.conditional and 1 or 0)):forward({nn.Sampler():cuda():forward({mean, log_var}), predClassVec})
classAccuracy = classAccuracy + commonFuncs.computeClassificationAccuracy(predictedClassScores, targetClassIndices)
else
recon = unpack(model:forward(opt.silhouetteInput and droppedInputs[2] or droppedInputs[1]))
end
local originalDepth = data.dataset[{{j}}]:cuda()
originalDepth = torch.cat(originalDepth, originalDepth, 1)
local originalSil = originalDepth:clone()
if opt.tanh then
originalSil[originalSil:gt(-1)] = 1
originalSil[originalSil:eq(-1)] = 0
else
originalSil[originalSil:gt(0)] = 1
end
criterion:forward(recon, {originalDepth, originalSil})
silErr = silErr + criterion.criterions[2].output
depthMapErr = depthMapErr + criterion.criterions[1].output
totalError = totalError + criterion.output
originalDepth = nil
originalSil = nil
if opt.maxNumOfRecons > 0 and counter <= opt.maxNumOfRecons or opt.maxNumOfRecons == 0 then
-- Will reconstruct all of the samples if opt.maxNumOfRecons is set to 0
local reconPath = experimentResultOutputPath .. (opt.singleVPNet and opt.allViewsExp and '/view' .. l or '') .. (t == 1 and '/train/' or '/test/') .. catLabel .. '/model' .. counter .. (opt.dropoutNet and 'VPs' .. (opt.numVPs - numOfVPsToDrop[1]) or opt.singleVPNet and not opt.allViewsExp and 'VP' .. pickedVPs[1] or '') .. '-' .. catLabel
paths.mkdir(reconPath .. '/mask')
for k=1, recon[1]:size(2) do
image.save(reconPath .. '/file1-img-' .. k-1 .. '-rec.png', recon[1][1][k])
image.save(reconPath .. '/mask/file1-img-' .. k-1 .. '-rec.png', recon[2][1][k])
-- Save the original depth maps and silhouettes (with a mark on their top-right corner for the ones not fed to the model)
image.save(reconPath .. '/file1-img-' .. k-1 .. '-or.png', depthMaps[1][k])
image.save(reconPath .. '/mask/file1-img-' .. k-1 .. '-or.png', silhouettes[1][k])
end
end
counter = counter + 1
if i % 4 == 0 then collectgarbage() end
end
data = nil
collectgarbage()
end
totalError = totalError/numSamples/(opt.imgSize^2*opt.numVPs)/2
silErr = silErr/numSamples/(opt.imgSize^2*opt.numVPs)/2
depthMapErr = depthMapErr/numSamples/(opt.imgSize^2*opt.numVPs)/2
if opt.conditional then
-- The division by 2 is due to feeding the same input twice in the same tensor to the model
classAccuracy = classAccuracy/numSamples/2
if opt.singleVPNet and opt.allViewsExp then
print (string.format(" ==> Statistics for view %d: Classification Accuracy: %.3f, Depth Err: %.4f, Sil. Err: %.4f, Total Err: %.4f", l, classAccuracy, depthMapErr, silErr, totalError))
else
print (string.format(" ==> Statistics: Classification Accuracy: %.3f, Depth Err: %.4f, Sil. Err: %.4f, Total Err: %.4f", classAccuracy, depthMapErr, silErr, totalError))
end
else
if opt.singleVPNet and opt.allViewsExp then
print (string.format(" ==> Statistics for view %d: Depth Err: %.4f, Sil. Err: %.4f, Total Err: %.4f", l, depthMapErr, silErr, totalError))
else
print (string.format(" ==> Statistics: Depth Err: %.4f, Sil. Err: %.4f, Total Err: %.4f", depthMapErr, silErr, totalError))
end
end
end
end
print ("==> Total time for doing the reconstruction" .. (opt.singleVPNet and opt.allViewsExp and (' for all ' .. opt.numVPs .. ' views') or '') .. ": " .. torch.toc(tic)/60 .. " minutes")
end
elseif opt.expType == 'NNs' then
--[[
Before running the nearest neighbor experiment make sure you have have copied your sample sets to 'experiments/epochX/conditionalSamples' chosen your desired samples from each sample set
by creating a viz.txt file and writing the row and column numbers of your desired samples in it.
For instance, if you set opt.canvasHW to 5 then each viewpoint canvas will show 25 images. In the vix.txt file you can
type the followings:
1, 2
1, 4
3, 2
1, 5
5, 5
4, 5
The first and second numbers represent the row and column numbers, respectively, on the canvases for the chosen samples
--]]
print ("==> Doing the nearest neighbors experiment")
print ("==> Configurations, modelDirName: " .. opt.modelDirName .. ", No. Latents: " .. opt.nLatents .. ", Batch Size: " .. opt.batchSize .. ", Batch Size (BS) Change Epoch: " .. opt.batchSizeChangeEpoch .. ", BS Change: " .. opt.batchSizeChange .. ", Target BS: " .. opt.targetBatchSize .. ", Output Fea. Maps: " .. opt.nCh .. ", LR Decay: " .. opt.lrDecay .. ", Learning Rate: " .. opt.lr .. ", InitialLR: " .. opt.initialLR .. ", KLD Grad. Coeff:" .. opt.KLD .. ", Tanh: " .. (opt.tanh and "True" or "False") .. ', DropoutNet: ' .. (opt.dropoutNet and "True" or "False") .. ', KeepVP: ' .. opt.VpToKeep .. ', silhouetteInput: ' .. (opt.silhouetteInput and "True" or "False") .. ', singleVPNet: ' .. (opt.singleVPNet and "True" or "False") .. ', conditional: ' .. (opt.conditional and "True" or "False") .. ', From Epoch: ' .. opt.fromEpoch)
local samplesPath = experimentResultOutputPath .. (opt.conditional and 'conditionalSamples' or 'randomSamples').. (meanLogVarPath and '-empirical' or string.format('-Mean_%.2f-Var_%.2f', opt.mean, opt.var)) -- The path from which the samples will be read
experimentResultOutputPath = experimentResultOutputPath .. 'nearestNeighbors' .. (opt.conditional and '/conditionalSamples' or '/randomSamples')
print ('==> Running nearest neighbors experiment. Please be patient. This experiment might take a long time especially if your training set is large.')
print('==> The results will be stored at ' .. "'" .. experimentResultOutputPath .. "'")
-- Get the Zs for the training data set
local counter = 1
local stupidCounter = 1
local Zs = {}
local labels = {}
local sampler = nn.Sampler()
-- local dropIndices = torch.zeros(opt.numVPs) -- A placeholder to hold the indices of the tensor to be zeroed-out -- Used for dropoutNet
local pickedVPs = torch.Tensor(2) -- A placeholder to hold the view point to be kept -- Used for singleVPNet
if opt.singleVPNet then
-- Fix on view 14 because view 14 has the highest classification accuracy and low reconstruction errors
pickedVPs[1] = 14
pickedVPs[2] = 14
end
sampler = sampler:cuda()
for i=1, #trainDataFiles do
data = nil
collectgarbage()
data = torch.load(trainDataFiles[i])
local localZs = torch.zeros(data.dataset:size(1), opt.nLatents*2):cuda()
local localLabels = torch.zeros(data.dataset:size(1))
for j=1, data.dataset:size(1) do
local depthMaps = data.dataset[{{j}}]:cuda()
local catLabel = data.category[data.labels[j]]
depthMaps = torch.cat(depthMaps, depthMaps, 1)
local silhouettes = depthMaps:clone()
if opt.tanh then
silhouettes[silhouettes:gt(-1)] = 1
silhouettes[silhouettes:eq(-1)] = 0
else
silhouettes[silhouettes:gt(0)] = 1
end
local droppedInputs = commonFuncs.dropInputVPs(not opt.silhouetteInput and depthMaps or silhouettes, false, opt.dropoutNet, nil, nil, opt.singleVPNet, pickedVPs)
local tempTensor = droppedInputs
local tempNoisyInput = tempTensor[tempTensor:gt(0)]
tempTensor[tempTensor:gt(0)] = tempNoisyInput:add(torch.rand(tempNoisyInput:size()):div(100):cuda())
local encodings = commonFuncs.getEncodings(droppedInputs, model:get(2), sampler, opt.conditional) -- model:get(2) points to the encoder
localZs[j]:copy(encodings[1])
localLabels[j] = data.labels[j]
end
Zs[i] = localZs:float()
labels[i] = localLabels
end
-- Get the Zs for the samples
local samplesMainDirs = commonFuncs.getFileNames(samplesPath, nil, false)
for c =1, opt.conditional and #samplesMainDirs or 1 do -- Go over each category, if conditional
local catName = opt.conditional and commonFuncs.splitTxt(samplesMainDirs[c], '/') or ''
catName = opt.conditional and catName[#catName]
local catDirs = commonFuncs.getFileNames(samplesMainDirs[c], nil, false)
samplesDirs = opt.conditional and catDirs or samplesMainDirs
local numOfSamplestoVisualize = commonFuncs.getNumOfSamplesToViz(samplesDirs)
local depthMapsTensor = torch.zeros(numOfSamplestoVisualize, opt.numVPs, opt.imgSize, opt.imgSize)
local silhouetteSTensor = torch.zeros(numOfSamplestoVisualize, opt.numVPs, opt.imgSize, opt.imgSize)
local sampleCounter = 1
for i=1, #samplesDirs do
local samplesToVisualize = commonFuncs.getFileNames(samplesDirs[i], 'viz.txt')
if #samplesToVisualize == 1 then -- if there exists a viz.txt file
local depthMapFilesToLoad = commonFuncs.getFileNames(samplesDirs[i], '.png')
local silhouetteFilesToLoad = commonFuncs.getFileNames(samplesDirs[i] .. '/mask', '.png')
f = assert(io.open(samplesToVisualize[1], 'r'))
for line in f:lines() do
local rowNum, colNum = commonFuncs.commaSeparatedStrToTable(line, true)
for j=1, opt.numVPs do
local tempDepthImg = image.load(depthMapFilesToLoad[j])[1]
depthMapsTensor[sampleCounter][j] = tempDepthImg[{{(rowNum-1)*opt.imgSize+1, rowNum*opt.imgSize}, {(colNum-1)*opt.imgSize+1, colNum*opt.imgSize}}]
local tempSilImg = image.load(silhouetteFilesToLoad[j])[1]
silhouetteSTensor[sampleCounter][j] = tempSilImg[{{(rowNum-1)*opt.imgSize+1, rowNum*opt.imgSize}, {(colNum-1)*opt.imgSize+1, colNum*opt.imgSize}}]
end
sampleCounter = sampleCounter + 1
end
f:close()
end
end
local samplesZs = torch.zeros(depthMapsTensor:size(1), opt.nLatents*2):cuda()
local sampleLabels = torch.zeros(depthMapsTensor:size(1))
for i=1, depthMapsTensor:size(1) do
local droppedInputs = commonFuncs.dropInputVPs({depthMapsTensor[{{i}}], silhouetteSTensor[{{i}}]}, true, opt.dropoutNet, nil, nil, opt.singleVPNet, pickedVPs)
droppedInputs = {droppedInputs[1]:cuda(), droppedInputs[2]:cuda()}
local tempTensor = opt.silhouetteInput and droppedInputs[2] or droppedInputs[1]
local tempNoisyInput = tempTensor[tempTensor:gt(0)]
tempTensor[tempTensor:gt(0)] = tempNoisyInput:add(torch.rand(tempNoisyInput:size()):div(100):cuda())
local encoding = commonFuncs.getEncodings(opt.silhouetteInput and droppedInputs[2]:cuda() or droppedInputs[1]:cuda(), model:get(2), sampler, opt.conditional)
samplesZs[i]:copy(encoding[1])
if opt.conditional then
local predClassVec = commonFuncs.computeClassificationAccuracy(encoding[2], nil, true, #data.category)
_, temp = predClassVec:max(2)
sampleLabels[i] = temp[1][1]
end
end
-- Compute the similarity
samplesZs = samplesZs:float()
local minZFileNo = {}
local minZIndex = {}
local groundTruthCatName = {}
local reconDepth = torch.zeros(samplesZs:size(1), opt.numVPs, opt.imgSize, opt.imgSize)
local reconSil = torch.zeros(samplesZs:size(1), opt.numVPs, opt.imgSize, opt.imgSize)
for i=1, samplesZs:size(1) do
-- Find the closest representation
local possibleLabel
local minDist = 1000000
local minLabel
local L1Norm
for j=1, #Zs do
for k=1, Zs[j]:size(1) do
L1Norm = torch.add(Zs[j][k], torch.mul(samplesZs[i], -1)):abs():sum()
if L1Norm < minDist then
minZFileNo[i] = j
minZIndex[i] = k
minDist = L1Norm
minLabel = labels[j][k]
groundTruthCatName[i] = data.category[labels[j][k]]
end
end
end
-- Store the sample's depth maps and silhouettes on disk
local localCounter = 0
local randomSamplePath = experimentResultOutputPath .. '/' .. (opt.conditional and catName or groundTruthCatName[i]) .. '/' .. i .. minZFileNo[i] .. '/sample' .. (opt.conditional and '-PredictedClass-' .. data.category[sampleLabels[i]] or '') .. '/'
paths.mkdir(randomSamplePath .. 'mask')
for k=1, depthMapsTensor:size(2) do
image.save(randomSamplePath .. 'file-' .. counter .. localCounter .. '-img-' .. k-1 .. '-rec.png', depthMapsTensor[i][k])
image.save(randomSamplePath .. '/mask/file-' .. counter .. localCounter.. '-img-' .. k-1 .. '-rec.png', silhouetteSTensor[i][k])
end
-- Obtain the reconstruction of the nearest-neighbor training sample
local mean_log_var = Zs[minZFileNo[i]][minZIndex[i]]:view(2, opt.nLatents):clone()
local mean = mean_log_var[{{1}}]:cuda()
local log_var = mean_log_var[{{2}}]:cuda()
local sampleVec = nn.Sampler():cuda():forward({mean, log_var})
sampleVec = torch.cat(sampleVec, sampleVec, 1)
if opt.conditional then
-- Create the ground-truth target vectors
targetClassHotVec = torch.CudaTensor(2, #data.category):fill(0)
targetClassHotVec[1][labels[minZFileNo[i]][minZIndex[i]]] = 1
targetClassHotVec[2][labels[minZFileNo[i]][minZIndex[i]]] = 1
recon = model:get(4+(opt.conditional and 1 or 0)):forward({sampleVec, targetClassHotVec})
else
recon = model:get(4):forward(sampleVec)
end
reconDepth[{{i}}]:copy(recon[1][{{1}}])
reconSil[{{i}}]:copy(recon[2][{{1}}])
localCounter = localCounter + 1
minLabel = nil
stupidCounter = stupidCounter + 1
end
data = nil
collectgarbage()
-- Store the reconstructions on disk
local localCounter = 1
-- data = torch.load(trainDataFiles[minZFileNo[1]])
for j=1, #trainDataFiles do
-- lastFileID = j
data = nil
collectgarbage()
data = torch.load(trainDataFiles[j])
for i=1, #minZFileNo do
if minZFileNo[i] == j then
local nearestPath = experimentResultOutputPath .. '/' .. (opt.conditional and catName or groundTruthCatName[i]) .. '/' .. i .. minZFileNo[i] .. '/nearest' .. (opt.conditional and '-' .. groundTruthCatName[i] or '')
paths.mkdir(nearestPath .. '/mask')
paths.mkdir(nearestPath .. '/nearestRecon/mask') -- To store the reconstruction of the nearest neighbor
-- if lastFileID ~= minZFileNo[i] then
-- -- This process is very time-consuming and inefficiently implemented especially if there are many training files on disk
-- -- Make it optimized!
-- lastFileID = minZFileNo[i]
-- data = nil
-- collectgarbage()
-- data = torch.load(trainDataFiles[minZFileNo[i]])
-- end
local depths = data.dataset[{{minZIndex[i]}}]:clone()
local silhouettes = depths:clone()
if opt.tanh then
silhouettes[silhouettes:gt(-1)] = 1
silhouettes[silhouettes:eq(-1)] = 0
else
silhouettes[silhouettes:gt(0)] = 1
end
commonFuncs.dropInputVPs({depths, silhouettes}, true, opt.dropoutNet, nil, dropIndices, opt.singleVPNet, pickedVPs)
for k=1, depthMapsTensor:size(2) do
image.save(nearestPath .. '/file' .. counter .. localCounter .. '-img-' .. k-1 .. '-or.png', depths[1][k])
image.save(nearestPath .. '/mask/file' .. counter ..localCounter .. '-img-' .. k-1 .. '-or.png', silhouettes[1][k])
-- Store the reconstruction
image.save(nearestPath .. '/nearestRecon/file' .. counter .. localCounter .. '-img-' .. k-1 .. '-rec.png', reconDepth[i][k])
image.save(nearestPath .. '/nearestRecon/mask/file' .. counter ..localCounter .. '-img-' .. k-1 .. '-rec.png', reconSil[i][k])
end
localCounter = localCounter + 1
end
end
end
counter = counter + 1
print ("==> Done storing results for " .. (opt.conditional and 'chosen samples for ' .. catName .. ' category' or 'random samples'))
end
print '==> Nearest neighbor experiment is done'
data = nil
collectgarbage()
elseif opt.expType == 'tSNE' then
print ("==> Configurations, modelDirName: " .. opt.modelDirName .. ", No. Latents: " .. opt.nLatents .. ", Batch Size: " .. opt.batchSize .. ", Batch Size (BS) Change Epoch: " .. opt.batchSizeChangeEpoch .. ", BS Change: " .. opt.batchSizeChange .. ", Target BS: " .. opt.targetBatchSize .. ", Output Fea. Maps: " .. opt.nCh .. ", LR Decay: " .. opt.lrDecay .. ", Learning Rate: " .. opt.lr .. ", InitialLR: " .. opt.initialLR .. ", KLD Grad. Coeff:" .. opt.KLD .. ", Tanh: " .. (opt.tanh and "True" or "False") .. ', DropoutNet: ' .. (opt.dropoutNet and "True" or "False") .. ', KeepVP: ' .. opt.VpToKeep .. ', silhouetteInput: ' .. (opt.silhouetteInput and "True" or "False") .. ', singleVPNet: ' .. (opt.singleVPNet and "True" or "False") .. ', conditional: ' .. (opt.conditional and "True" or "False") .. ', From Epoch: ' .. opt.fromEpoch)
experimentResultOutputPath = experimentResultOutputPath .. 'tSNE'
print ('==> Running tSNE experiment for validation/test samples. The results will be stored in ' .. experimentResultOutputPath)
local allZs, allLabels, data
if not paths.filep(experimentResultOutputPath .. '/allZs.t7') then
paths.mkdir(experimentResultOutputPath)
local Zs = {}
local labels = {}
local sampler = nn.Sampler()
-- local numOfVPsToDrop = torch.zeros(1) -- A placeholder to hold the number of view points to be dropped for the current category
-- local dropIndices = torch.zeros(opt.numVPs) -- A placeholder to hold the indices of the tensor to be zeroed-out -- Used for dropoutNet
-- local pickedVPs = torch.Tensor(2) -- A placeholder to hold the view point to be kept -- Used for singleVPNet
-- -- Fix on view 12
-- pickedVPs[1] = 12
-- pickedVPs[2] = 12
sampler = sampler:cuda()
for i=1, #trainDataFiles do
data = torch.load(trainDataFiles[i])
local localZs = torch.zeros(data.dataset:size(1), opt.nLatents * 2):cuda()
local localLabels = torch.zeros(data.dataset:size(1))
for j=1, data.dataset:size(1) do
local depthMaps = data.dataset[{{j}}]:cuda()
depthMaps = torch.cat(depthMaps, depthMaps, 1)
local silhouettes = depthMaps:clone()
if opt.tanh then
silhouettes[silhouettes:gt(-1)] = 1
silhouettes[silhouettes:eq(-1)] = 0
else
silhouettes[silhouettes:gt(0)] = 1
end
local droppedInputs = commonFuncs.dropInputVPs(not opt.silhouetteInput and depthMaps or silhouettes, false, opt.dropoutNet, numOfVPsToDrop, dropIndices, opt.singleVPNet, pickedVPs)
local encoding = commonFuncs.getEncodings(droppedInputs, model:get(2), sampler, opt.silhouettes, opt.silhouetteInput)
localZs[j]:copy(encoding[1])
localLabels[j] = data.labels[j]
end
Zs[i] = localZs:float()
labels[i] = localLabels
end
allZs = torch.Tensor(1, opt.nLatents * 2)
allLabels = torch.Tensor(1)
for i=1, #Zs do
Zs[i] = Zs[i]:float()
labels[i] = labels[i]:float()
allZs = torch.cat(allZs, Zs[i], 1)
allLabels = torch.cat(allLabels, labels[i], 1)
end
allZs = allZs[{{2, allZs:size(1)}}]
allLabels = allLabels[{{2, allLabels:size(1)}}]
torch.save(experimentResultOutputPath .. '/allZs.t7', allZs)
torch.save(experimentResultOutputPath .. '/allLabels.t7', allLabels)
print ('==> Embedding have been saved on disk. Running tSNE now')
else
print ("==> The embeddings are already stored on disk in '" .. experimentResultOutputPath .. "'. Running tSNE now")
allZs = torch.load(experimentResultOutputPath .. '/allZs.t7')
allLabels = torch.load(experimentResultOutputPath .. '/allLabels.t7')
data = torch.load(trainDataFiles[1])
end
tsne = require 'tsne'
allZs = allZs:double()
local y = tsne(allZs, 2, opt.testPhase and 400 or 1900, opt.testPhase and 2000 or 6500, 0.15, opt.testPhase and 8 or 24)
commonFuncs.show_scatter_plot('tSNE-Plot', y, allLabels, #data.category, data.category, experimentResultOutputPath)
print '==> Finished running tSNE experiment'
end