-
Notifications
You must be signed in to change notification settings - Fork 4
/
Math.cpp
233 lines (204 loc) · 7.37 KB
/
Math.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
// Ahmed S. Tolba 2015-2018
#include "Math.h"
const Vector2 Vector2::Zero(0.0f, 0.0f);
const Vector2 Vector2::UnitX(1.0f, 0.0f);
const Vector2 Vector2::UnitY(0.0f, 1.0f);
const Vector2 Vector2::NegUnitX(-1.0f, 0.0f);
const Vector2 Vector2::NegUnitY(0.0f, -1.0f);
const Vector3 Vector3::Zero(0.0f, 0.0f, 0.f);
const Vector3 Vector3::UnitX(1.0f, 0.0f, 0.0f);
const Vector3 Vector3::UnitY(0.0f, 1.0f, 0.0f);
const Vector3 Vector3::UnitZ(0.0f, 0.0f, 1.0f);
const Vector3 Vector3::NegUnitX(-1.0f, 0.0f, 0.0f);
const Vector3 Vector3::NegUnitY(0.0f, -1.0f, 0.0f);
const Vector3 Vector3::NegUnitZ(0.0f, 0.0f, -1.0f);
const Vector3 Vector3::Infinity(Math::Infinity, Math::Infinity, Math::Infinity);
const Vector3 Vector3::NegInfinity(Math::NegInfinity, Math::NegInfinity, Math::NegInfinity);
static float m3Ident[3][3] =
{
{ 1.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f }
};
const Matrix3 Matrix3::Identity(m3Ident);
static float m4Ident[4][4] =
{
{ 1.0f, 0.0f, 0.0f, 0.0f },
{ 0.0f, 1.0f, 0.0f, 0.0f },
{ 0.0f, 0.0f, 1.0f, 0.0f },
{ 0.0f, 0.0f, 0.0f, 1.0f }
};
const Matrix4 Matrix4::Identity(m4Ident);
const Quaternion Quaternion::Identity(0.0f, 0.0f, 0.0f, 1.0f);
Vector2 Vector2::Transform(const Vector2& vec, const Matrix3& mat, float w /*= 1.0f*/)
{
Vector2 retVal;
retVal.x = vec.x * mat.mat[0][0] + vec.y * mat.mat[1][0] + w * mat.mat[2][0];
retVal.y = vec.x * mat.mat[0][1] + vec.y * mat.mat[1][1] + w * mat.mat[2][1];
//ignore w since we aren't returning a new value for it...
return retVal;
}
Vector3 Vector3::Transform(const Vector3& vec, const Matrix4& mat, float w /*= 1.0f*/)
{
Vector3 retVal;
retVal.x = vec.x * mat.mat[0][0] + vec.y * mat.mat[1][0] +
vec.z * mat.mat[2][0] + w * mat.mat[3][0];
retVal.y = vec.x * mat.mat[0][1] + vec.y * mat.mat[1][1] +
vec.z * mat.mat[2][1] + w * mat.mat[3][1];
retVal.z = vec.x * mat.mat[0][2] + vec.y * mat.mat[1][2] +
vec.z * mat.mat[2][2] + w * mat.mat[3][2];
//ignore w since we aren't returning a new value for it...
return retVal;
}
// This will transform the vector and renormalize the w component
Vector3 Vector3::TransformWithPerspDiv(const Vector3& vec, const Matrix4& mat, float w /*= 1.0f*/)
{
Vector3 retVal;
retVal.x = vec.x * mat.mat[0][0] + vec.y * mat.mat[1][0] +
vec.z * mat.mat[2][0] + w * mat.mat[3][0];
retVal.y = vec.x * mat.mat[0][1] + vec.y * mat.mat[1][1] +
vec.z * mat.mat[2][1] + w * mat.mat[3][1];
retVal.z = vec.x * mat.mat[0][2] + vec.y * mat.mat[1][2] +
vec.z * mat.mat[2][2] + w * mat.mat[3][2];
float transformedW = vec.x * mat.mat[0][3] + vec.y * mat.mat[1][3] +
vec.z * mat.mat[2][3] + w * mat.mat[3][3];
if (!Math::NearZero(Math::Abs(transformedW)))
{
transformedW = 1.0f / transformedW;
retVal *= transformedW;
}
return retVal;
}
// Transform a Vector3 by a quaternion
Vector3 Vector3::Transform(const Vector3& v, const Quaternion& q)
{
// v + 2.0*cross(q.xyz, cross(q.xyz,v) + q.w*v);
Vector3 qv(q.x, q.y, q.z);
Vector3 retVal = v;
retVal += 2.0f * Vector3::Cross(qv, Vector3::Cross(qv, v) + q.w * v);
return retVal;
}
void Matrix4::Invert()
{
// Thanks slow math
// This is a really janky way to unroll everything...
float tmp[12];
float src[16];
float dst[16];
float det;
// Transpose matrix
// row 1 to col 1
src[0] = mat[0][0];
src[4] = mat[0][1];
src[8] = mat[0][2];
src[12] = mat[0][3];
// row 2 to col 2
src[1] = mat[1][0];
src[5] = mat[1][1];
src[9] = mat[1][2];
src[13] = mat[1][3];
// row 3 to col 3
src[2] = mat[2][0];
src[6] = mat[2][1];
src[10] = mat[2][2];
src[14] = mat[2][3];
// row 4 to col 4
src[3] = mat[3][0];
src[7] = mat[3][1];
src[11] = mat[3][2];
src[15] = mat[3][3];
// Calculate cofactors
tmp[0] = src[10] * src[15];
tmp[1] = src[11] * src[14];
tmp[2] = src[9] * src[15];
tmp[3] = src[11] * src[13];
tmp[4] = src[9] * src[14];
tmp[5] = src[10] * src[13];
tmp[6] = src[8] * src[15];
tmp[7] = src[11] * src[12];
tmp[8] = src[8] * src[14];
tmp[9] = src[10] * src[12];
tmp[10] = src[8] * src[13];
tmp[11] = src[9] * src[12];
dst[0] = tmp[0] * src[5] + tmp[3] * src[6] + tmp[4] * src[7];
dst[0] -= tmp[1] * src[5] + tmp[2] * src[6] + tmp[5] * src[7];
dst[1] = tmp[1] * src[4] + tmp[6] * src[6] + tmp[9] * src[7];
dst[1] -= tmp[0] * src[4] + tmp[7] * src[6] + tmp[8] * src[7];
dst[2] = tmp[2] * src[4] + tmp[7] * src[5] + tmp[10] * src[7];
dst[2] -= tmp[3] * src[4] + tmp[6] * src[5] + tmp[11] * src[7];
dst[3] = tmp[5] * src[4] + tmp[8] * src[5] + tmp[11] * src[6];
dst[3] -= tmp[4] * src[4] + tmp[9] * src[5] + tmp[10] * src[6];
dst[4] = tmp[1] * src[1] + tmp[2] * src[2] + tmp[5] * src[3];
dst[4] -= tmp[0] * src[1] + tmp[3] * src[2] + tmp[4] * src[3];
dst[5] = tmp[0] * src[0] + tmp[7] * src[2] + tmp[8] * src[3];
dst[5] -= tmp[1] * src[0] + tmp[6] * src[2] + tmp[9] * src[3];
dst[6] = tmp[3] * src[0] + tmp[6] * src[1] + tmp[11] * src[3];
dst[6] -= tmp[2] * src[0] + tmp[7] * src[1] + tmp[10] * src[3];
dst[7] = tmp[4] * src[0] + tmp[9] * src[1] + tmp[10] * src[2];
dst[7] -= tmp[5] * src[0] + tmp[8] * src[1] + tmp[11] * src[2];
tmp[0] = src[2] * src[7];
tmp[1] = src[3] * src[6];
tmp[2] = src[1] * src[7];
tmp[3] = src[3] * src[5];
tmp[4] = src[1] * src[6];
tmp[5] = src[2] * src[5];
tmp[6] = src[0] * src[7];
tmp[7] = src[3] * src[4];
tmp[8] = src[0] * src[6];
tmp[9] = src[2] * src[4];
tmp[10] = src[0] * src[5];
tmp[11] = src[1] * src[4];
dst[8] = tmp[0] * src[13] + tmp[3] * src[14] + tmp[4] * src[15];
dst[8] -= tmp[1] * src[13] + tmp[2] * src[14] + tmp[5] * src[15];
dst[9] = tmp[1] * src[12] + tmp[6] * src[14] + tmp[9] * src[15];
dst[9] -= tmp[0] * src[12] + tmp[7] * src[14] + tmp[8] * src[15];
dst[10] = tmp[2] * src[12] + tmp[7] * src[13] + tmp[10] * src[15];
dst[10] -= tmp[3] * src[12] + tmp[6] * src[13] + tmp[11] * src[15];
dst[11] = tmp[5] * src[12] + tmp[8] * src[13] + tmp[11] * src[14];
dst[11] -= tmp[4] * src[12] + tmp[9] * src[13] + tmp[10] * src[14];
dst[12] = tmp[2] * src[10] + tmp[5] * src[11] + tmp[1] * src[9];
dst[12] -= tmp[4] * src[11] + tmp[0] * src[9] + tmp[3] * src[10];
dst[13] = tmp[8] * src[11] + tmp[0] * src[8] + tmp[7] * src[10];
dst[13] -= tmp[6] * src[10] + tmp[9] * src[11] + tmp[1] * src[8];
dst[14] = tmp[6] * src[9] + tmp[11] * src[11] + tmp[3] * src[8];
dst[14] -= tmp[10] * src[11] + tmp[2] * src[8] + tmp[7] * src[9];
dst[15] = tmp[10] * src[10] + tmp[4] * src[8] + tmp[9] * src[9];
dst[15] -= tmp[8] * src[9] + tmp[11] * src[10] + tmp[5] * src[8];
// Calculate determinant
det = src[0] * dst[0] + src[1] * dst[1] + src[2] * dst[2] + src[3] * dst[3];
// Inverse of matrix is divided by determinant
det = 1 / det;
for (int j = 0; j < 16; j++)
{
dst[j] *= det;
}
// Set it back
for (int i = 0; i < 4; i++)
{
for (int j = 0; j < 4; j++)
{
mat[i][j] = dst[i * 4 + j];
}
}
}
Matrix4 Matrix4::CreateFromQuaternion(const class Quaternion& q)
{
float mat[4][4];
mat[0][0] = 1.0f - 2.0f * q.y * q.y - 2.0f * q.z * q.z;
mat[0][1] = 2.0f * q.x * q.y + 2.0f * q.w * q.z;
mat[0][2] = 2.0f * q.x * q.z - 2.0f * q.w * q.y;
mat[0][3] = 0.0f;
mat[1][0] = 2.0f * q.x * q.y - 2.0f * q.w * q.z;
mat[1][1] = 1.0f - 2.0f * q.x * q.x - 2.0f * q.z * q.z;
mat[1][2] = 2.0f * q.y * q.z + 2.0f * q.w * q.x;
mat[1][3] = 0.0f;
mat[2][0] = 2.0f * q.x * q.z + 2.0f * q.w * q.y;
mat[2][1] = 2.0f * q.y * q.z - 2.0f * q.w * q.x;
mat[2][2] = 1.0f - 2.0f * q.x * q.x - 2.0f * q.y * q.y;
mat[2][3] = 0.0f;
mat[3][0] = 0.0f;
mat[3][1] = 0.0f;
mat[3][2] = 0.0f;
mat[3][3] = 1.0f;
return Matrix4(mat);
}