-
Notifications
You must be signed in to change notification settings - Fork 2
/
bbg_fetch.py
619 lines (536 loc) · 26.8 KB
/
bbg_fetch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
"""
pip install --index-url=https://bcms.bloomberg.com/pip/simple blpapi
pip install --index-url=https://blpapi.bloomberg.com/repository/releases/python/simple blpapi
GFUT
"""
# packages
import re
import warnings
import datetime
import numpy as np
import pandas as pd
from enum import Enum
from typing import List, Optional, Tuple, Dict, Union
from xbbg import blp
DEFAULT_START_DATE = pd.Timestamp('01Jan1959')
VOLS_START_DATE = pd.Timestamp('03Jan2005')
FX_DICT = {
'EURUSD Curncy': 'EUR',
'GBPUSD Curncy': 'GBP',
'CHFUSD Curncy': 'CHF',
'CADUSD Curncy': 'CAD',
'JPYUSD Curncy': 'JPY',
'AUDUSD Curncy': 'AUD',
'NZDUSD Curncy': 'NZD',
'MXNUSD Curncy': 'MXN',
'HKDUSD Curncy': 'HKD',
'SEKUSD Curncy': 'SEK',
'PLNUSD Curncy': 'PLN',
'KRWUSD Curncy': 'KRW',
'TRYUSD Curncy': 'TRY',
'SGDUSD Curncy': 'SGD',
'ZARUSD Curncy': 'ZAR',
'CNYUSD Curncy': 'CNY',
'INRUSD Curncy': 'INR',
'TWDUSD Curncy': 'TWD',
'NOKUSD Curncy': 'NOK'
}
IMPVOL_FIELDS_MNY_30DAY = {'30DAY_IMPVOL_80%MNY_DF': '30d80.0',
'30DAY_IMPVOL_90.0%MNY_DF': '30d90.0',
'30DAY_IMPVOL_95.0%MNY_DF': '30d95.0',
'30DAY_IMPVOL_97.5%MNY_DF': '30d97.5',
'30DAY_IMPVOL_100.0%MNY_DF': '30d100.0',
'30DAY_IMPVOL_102.5%MNY_DF': '30d102.5',
'30DAY_IMPVOL_105.0%MNY_DF': '30d105.0',
'30DAY_IMPVOL_110.0%MNY_DF': '30d110.0',
'30DAY_IMPVOL_120%MNY_DF': '30d120.0'}
IMPVOL_FIELDS_MNY_60DAY = {'60DAY_IMPVOL_80%MNY_DF': '60d80.0',
'60DAY_IMPVOL_90.0%MNY_DF': '60d90.0',
'60DAY_IMPVOL_95.0%MNY_DF': '60d95.0',
'60DAY_IMPVOL_97.5%MNY_DF': '60d97.5',
'60DAY_IMPVOL_100.0%MNY_DF': '60d100.0',
'60DAY_IMPVOL_102.5%MNY_DF': '60d102.5',
'60DAY_IMPVOL_105.0%MNY_DF': '60d105.0',
'60DAY_IMPVOL_110.0%MNY_DF': '60d110.0',
'60DAY_IMPVOL_120%MNY_DF': '60d120.0'}
IMPVOL_FIELDS_MNY_3MTH = {'3MTH_IMPVOL_80%MNY_DF': '3m80.0',
'3MTH_IMPVOL_90.0%MNY_DF': '3m90.0',
'3MTH_IMPVOL_95.0%MNY_DF': '3m95.0',
'3MTH_IMPVOL_97.5%MNY_DF': '3m97.5',
'3MTH_IMPVOL_100.0%MNY_DF': '3m100.0',
'3MTH_IMPVOL_102.5%MNY_DF': '3m102.5',
'3MTH_IMPVOL_105.0%MNY_DF': '3m105.0',
'3MTH_IMPVOL_110.0%MNY_DF': '3m110.0',
'3MTH_IMPVOL_120%MNY_DF': '3m120.0'}
IMPVOL_FIELDS_MNY_6MTH = {'6MTH_IMPVOL_80%MNY_DF': '6m80.0',
'6MTH_IMPVOL_90.0%MNY_DF': '6m90.0',
'6MTH_IMPVOL_95.0%MNY_DF': '6m95.0',
'6MTH_IMPVOL_97.5%MNY_DF': '6m97.5',
'6MTH_IMPVOL_100.0%MNY_DF': '6m100.0',
'6MTH_IMPVOL_102.5%MNY_DF': '6m102.5',
'6MTH_IMPVOL_105.0%MNY_DF': '6m105.0',
'6MTH_IMPVOL_110.0%MNY_DF': '6m110.0',
'6MTH_IMPVOL_120%MNY_DF': '6m120.0'}
IMPVOL_FIELDS_MNY_12M = {'12MTH_IMPVOL_80%MNY_DF': '12m80.0',
'12MTH_IMPVOL_90.0%MNY_DF': '12m90.0',
'12MTH_IMPVOL_95.0%MNY_DF': '12m95.0',
'12MTH_IMPVOL_97.5%MNY_DF': '12m97.5',
'12MTH_IMPVOL_100.0%MNY_DF': '12m100.0',
'12MTH_IMPVOL_102.5%MNY_DF': '12m102.5',
'12MTH_IMPVOL_105.0%MNY_DF': '12m105.0',
'12MTH_IMPVOL_110.0%MNY_DF': '12m110.0',
'12MTH_IMPVOL_120%MNY_DF': '12m120.0'}
IMPVOL_FIELDS_DELTA = {'1M_CALL_IMP_VOL_10DELTA_DFLT': '1MC10D.0',
'1M_CALL_IMP_VOL_25DELTA_DFLT': '1MC25D.0',
'1M_CALL_IMP_VOL_40DELTA_DFLT': '1MC40D.0',
'1M_CALL_IMP_VOL_50DELTA_DFLT': '1MC50D.0',
'1M_PUT_IMP_VOL_50DELTA_DFLT': '1MP50D.0',
'1M_PUT_IMP_VOL_40DELTA_DFLT': '1MP40D.0',
'1M_PUT_IMP_VOL_25DELTA_DFLT': '1MP25D.0',
'1M_PUT_IMP_VOL_10DELTA_DFLT': '1MP10D.0',
'2M_CALL_IMP_VOL_10DELTA_DFLT': '2MC10D.0',
'2M_CALL_IMP_VOL_25DELTA_DFLT': '2MC25D.0',
'2M_CALL_IMP_VOL_40DELTA_DFLT': '2MC40D.0',
'2M_CALL_IMP_VOL_50DELTA_DFLT': '2MC50D.0',
'2M_PUT_IMP_VOL_50DELTA_DFLT': '2MP50D.0',
'2M_PUT_IMP_VOL_40DELTA_DFLT': '2MP40D.0',
'2M_PUT_IMP_VOL_25DELTA_DFLT': '2MP25D.0',
'2M_PUT_IMP_VOL_10DELTA_DFLT': '2MP10D.0'
}
def fetch_field_timeseries_per_tickers(tickers: Union[List[str], Dict[str, str]],
field: str = 'PX_LAST',
CshAdjNormal: bool = True,
CshAdjAbnormal: bool = True,
CapChg: bool = True,
start_date: Optional[pd.Timestamp] = DEFAULT_START_DATE,
end_date: Optional[pd.Timestamp] = pd.Timestamp.now(),
freq: str = None
) -> Optional[pd.DataFrame]:
"""
get bloomberg field data adjusted for splits and divs for a list of tickers
tickers can be a dict {'ES1 Index': 'SPY', 'UXY1 Comdty': '10yUST'}, then df columns are renamed
"""
if isinstance(tickers, list):
tickers_ = tickers
elif isinstance(tickers, dict):
tickers_ = list(tickers.keys())
else:
raise NotImplemented(f"type={type(tickers)}")
field_data = blp.bdh(tickers_, field, start_date, end_date, CshAdjNormal=CshAdjNormal,
CshAdjAbnormal=CshAdjAbnormal, CapChg=CapChg)
try:
field_data.columns = field_data.columns.droplevel(1) # eliminate multiindex
except:
warnings.warn(f"something is wrong for field={field}")
return None
# make sure all columns are returned
field_data.index = pd.to_datetime(field_data.index)
if freq is not None:
field_data = field_data.asfreq(freq, method='ffill')
# align columns
field_data = field_data.reindex(columns=tickers_)
if isinstance(tickers, dict):
field_data = field_data.rename(tickers, axis=1)
field_data = field_data.sort_index()
return field_data
def fetch_fields_timeseries_per_ticker(ticker: str,
fields: List[str] = ('PX_OPEN', 'PX_HIGH', 'PX_LOW', 'PX_LAST',),
CshAdjNormal: bool = True,
CshAdjAbnormal: bool = True,
CapChg: bool = True,
start_date: pd.Timestamp = DEFAULT_START_DATE,
end_date: pd.Timestamp = pd.Timestamp.now()
) -> Optional[pd.DataFrame]:
"""
get bloomberg fields data adjusted for splits and divs for given ticker
"""
try:
# get bloomberg data adjusted for splits and divs
field_data = blp.bdh(ticker, fields, start_date, end_date,
CshAdjNormal=CshAdjNormal, CshAdjAbnormal=CshAdjAbnormal, CapChg=CapChg)
except:
warnings.warn(f"could not get field_data for ticker={ticker}")
return None
try:
field_data.columns = field_data.columns.droplevel(0) # eliminate multiindex
except:
warnings.warn(f"something is wrong for ticker=r={ticker}")
print(field_data)
return None
if len(fields) > 1:
field_data = field_data.reindex(columns=fields) # rearrange columns
else:
pass
field_data.index = pd.to_datetime(field_data.index)
field_data.sort_index()
return field_data
def fetch_fundamentals(tickers: List[str],
fields: List[str] = ('security_name', 'gics_sector_name',)
) -> pd.DataFrame:
df = blp.bdp(tickers=tickers, flds=fields)
# align with given order of tickers and fields
df = df.reindex(index=tickers).reindex(columns=fields)
return df
def fetch_active_futures(generic_ticker: str = 'ES1 Index',
first_gen: int = 1
) -> Tuple[pd.Series, pd.Series]:
"""
need to run with GFUT settings: roll = None
bloomberg often fails to get joint data for two adjacent futures
we need to split the index
"""
atickers = [instrument_to_active_ticker(generic_ticker, num=first_gen),
instrument_to_active_ticker(generic_ticker, num=first_gen + 1)]
start_date = DEFAULT_START_DATE
end_date = pd.Timestamp.now()
price_datas = {}
for aticker in atickers:
price_data = fetch_fields_timeseries_per_ticker(ticker=aticker, fields=['PX_LAST'],
CshAdjNormal=False, CshAdjAbnormal=False, CapChg=False,
start_date=start_date, end_date=end_date)
if price_data is None or price_data.empty:
warnings.warn(f"second attempt to fetch data for {aticker}")
price_data = fetch_fields_timeseries_per_ticker(ticker=aticker, fields=['PX_LAST'],
CshAdjNormal=False, CshAdjAbnormal=False, CapChg=False,
start_date=start_date, end_date=end_date)
if price_data is None or price_data.empty:
warnings.warn(f"third attempt to fetch data for {aticker}")
price_data = fetch_fields_timeseries_per_ticker(ticker=aticker, fields=['PX_LAST'],
CshAdjNormal=False, CshAdjAbnormal=False, CapChg=False,
start_date=start_date, end_date=end_date)
price_datas[aticker] = price_data.iloc[:, 0]
start_date = price_data.index[0]
end_date = price_data.index[-1]
price_data = pd.DataFrame.from_dict(price_datas, orient='columns')
return price_data.iloc[:, 0], price_data.iloc[:, 1]
def fetch_futures_contract_table(ticker: str = "ESA Index",
flds: List[str] = ('name',
'px_settle',
'px_last',
'px_bid', 'px_ask', 'bid_size', 'ask_size',
'volume', 'volume_avg_5d', 'open_int',
'fut_cont_size',
'contract_value',
'fut_val_pt',
'quoted_crncy',
'fut_days_expire',
'px_settle_last_dt',
'last_tradeable_dt',
'last_update_dt',
'last_update'),
add_timestamp: bool = True,
add_gen_number: bool = True,
add_carry: bool = True,
tz: Optional[str] = 'UTC'
) -> pd.DataFrame:
"""
fetch contract table for active futures
"""
contracts = blp.bds(ticker, "FUT_CHAIN")
if contracts.empty:
contracts = blp.bds(ticker, "FUT_CHAIN")
if not contracts.empty:
tickers = contracts['security_description']
df = blp.bdp(tickers=tickers, flds=flds)
tradable_tickers = tickers[np.isin(tickers, df.index, assume_unique=True)]
good_columns = pd.Index(flds)[np.isin(flds, df.columns, assume_unique=True)]
df = df.loc[tradable_tickers, good_columns]
if add_timestamp:
timestamps = df['last_update_dt'].copy()
# last_update can be date.time
for idx, (x, y) in enumerate(zip(df['last_update_dt'], df['last_update'])):
if isinstance(y, datetime.time):
timestamps.iloc[idx] = pd.Timestamp.combine(x, y).tz_localize(tz='CET').tz_convert(tz)
elif isinstance(x, datetime.date):
timestamps.iloc[idx] = pd.Timestamp.combine(x, datetime.time(0,0,0)).tz_localize(tz)
df['update'] = timestamps
df['timestamp'] = pd.Timestamp.utcnow()
df = df.drop(['last_update_dt', 'last_update'], axis=1)
if add_gen_number:
df['gen_number'] = [n+1 for n in range(len(df.index))]
if add_carry and len(df.index) > 1:
n = len(df.index)
carry = np.full(n, np.nan)
bid_ask = df[['px_bid', 'px_ask']].to_numpy()
is_good = np.logical_and(pd.isna(bid_ask[:, 0])==False, pd.isna(bid_ask[:, 1])==False)
mid_price = np.where(is_good, 0.5*(bid_ask[:, 0]+bid_ask[:, 1]), np.nan)
an_days_to_mat = df['fut_days_expire'].to_numpy() / 365.0
for idx in range(n):
if idx > 0:
carry[idx] = - (mid_price[idx] - mid_price[idx-1]) / mid_price[idx-1] / (an_days_to_mat[idx]-an_days_to_mat[idx-1])
df['an_carry'] = carry
else:
print(f"no data for {ticker}")
df = pd.DataFrame()
df['ticker'] = ticker
return df
def fetch_vol_timeseries(ticker: str = 'SPX Index',
vol_fields: Union[Dict, List] = IMPVOL_FIELDS_DELTA,
start_date: pd.Timestamp = VOLS_START_DATE,
rate_index: str = 'usgg3m Index',
add_underlying: bool = True,
rename: bool = True,
scaler: Optional[float] = 0.01
) -> pd.DataFrame:
"""
fetch imlied vols specified in vol_fields
"""
if isinstance(vol_fields, list):
df = fetch_fields_timeseries_per_ticker(ticker=ticker,
fields=vol_fields,
start_date=start_date)
else:
df = fetch_fields_timeseries_per_ticker(ticker=ticker,
fields=list(vol_fields.keys()),
start_date=start_date)
if rename:
df = df.rename(vol_fields, axis=1)
if scaler is not None:
df *= scaler
if add_underlying:
price = fetch_fields_timeseries_per_ticker(ticker=ticker,
fields=['PX_LAST', 'EQY_DVD_YLD_12M'],
start_date=start_date)
if scaler is not None:
price['EQY_DVD_YLD_12M'] *= scaler
price = price.rename({'PX_LAST': 'spot_price', 'EQY_DVD_YLD_12M': 'div_yield'}, axis=1)
rate_3m = fetch_fields_timeseries_per_ticker(ticker=rate_index,
fields=['PX_LAST'],
start_date=start_date)
if scaler is not None:
rate_3m *= scaler
rate_3m = rate_3m.rename({'PX_LAST': 'rf_rate'}, axis=1)
# drop row when vols are missing
df = pd.concat([price, rate_3m, df], axis=1)#.dropna(axis=0, subset=df.columns, how='all')
return df
def fetch_last_prices(tickers: Union[List, Dict] = FX_DICT) -> pd.Series:
"""
fetch last prices of instruments in tickers
"""
if isinstance(tickers, Dict):
tickers1 = list(tickers.keys())
else:
tickers1 = tickers
df = blp.bdp(tickers=tickers1, flds='px_last')
if isinstance(tickers, Dict):
df = df.rename(tickers, axis=0)
return df.iloc[:, 0]
def fetch_bonds_info(isins: List[str] = ['US03522AAJ97', 'US126650CZ11'],
fields: List[str] = ('id_bb', 'name', 'security_des',
'ult_parent_ticker_exchange', 'crncy', 'amt_outstanding',
'px_last',
'yas_bond_yld', 'yas_oas_sprd', 'yas_mod_dur')
) -> pd.DataFrame:
"""
bonds are given by isins
fetch fileds data for bonds
"""
issue_data = blp.bdp([f"{isin} corp" for isin in isins], fields)
# process US03522AAH32 corp to US03522AAH32
issue_data.insert(loc=0, column='isin', value=[x.split(' ')[0] for x in issue_data.index])
issue_data = issue_data.reset_index(names='isin_corp').set_index('isin')
issue_data = issue_data.reindex(index=isins)
return issue_data
def fetch_cds_info(equity_tickers: List[str] = ('ABI BB Equity', 'CVS US Equity'),
field: str = 'cds_spread_ticker_5y'
) -> pd.DataFrame:
"""
fetch cds info
"""
cds_rate_tickers = blp.bdp(tickers=equity_tickers, flds=field)
cds_rate_tickers = cds_rate_tickers.reindex(index=equity_tickers)
return cds_rate_tickers
def fetch_balance_data(tickers: List[str] = ('ABI BB Equity', 'T US Equity', 'JPM US Equity'),
fields: List[str] = ('GICS_SECTOR_NAME', 'BB_ISSR_COMP_BSE_ON_RTGS', 'TOT_COMMON_EQY',
'BS_LT_BORROW', 'BS_ST_BORROW', 'EQY_FUND_CRNCY',
'EARN_YLD',
'RETURN_ON_ASSETS_ADJUSTED',
'NET_DEBT_TO_FFCF',
'NET_DEBT_TO_CASHFLOW',
'FREE_CASH_FLOW_MARGIN',
'CFO_TO_SALES',
'NET_DEBT_PCT_OF_TOT_CAPITAL',
'INTEREST_COVERAGE_RATIO',
'BS_LIQUIDITY_COVERAGE_RATIO',
'NET_DEBT_TO_EBITDA',
'T12_FCF_T12_EBITDA')
) -> pd.DataFrame:
"""
fundamentals data for tickers in tickers
"""
issue_data = blp.bdp(tickers, fields)
issue_data = issue_data.rename({x: x.upper() for x in issue_data.columns}, axis=1)
issue_data = issue_data.reindex(index=tickers).reindex(columns=fields)
return issue_data
def fetch_tickers_from_isins(isins: List[str] = ['US88160R1014', 'IL0065100930']) -> List[str]:
"""
=BDP("US4592001014 ISIN", "PARSEKYABLE_DES") => IBM XX Equity
where XX depends on your terminal settings, which you can check on CNDF <Go>.
get the main exchange composite ticker, or whatever suits your need (in A3):
=BDP(A2,"EQY_PRIM_SECURITY_COMP_EXCH") => US
"""
tickers = {f"/ISIN/{x}": x for x in isins}
df = blp.bdp(list(tickers.keys()), ["parsekyable_des", "eqy_prim_security_comp_exch"])
df.index = df.index.map(tickers) # map back to isins need to sort back to isins order
df = df.reindex(index=isins)
# replace default country with exchange
tickers = []
for ticker_, exchange in zip(df["parsekyable_des"].to_list(), df["eqy_prim_security_comp_exch"].to_list()):
ticker_s = ticker_.split(' ')
tickers.append(f"{ticker_s[0]} {exchange} {ticker_s[-1]}")
return tickers
def fetch_dividend_history(ticker: str = 'TIP US Equity') -> pd.DataFrame:
"""
df.columns = ['declared_date', 'ex_date', 'record_date', 'payable_date',
'dividend_amount', 'dividend_frequency', 'dividend_type']
"""
this = blp.bds(ticker, 'dvd_hist_all')
return this
def fetch_div_yields(tickers: Union[List[str], Dict[str, str]],
dividend_types: List[str] = ('Income', 'Distribution')
) -> Tuple[pd.DataFrame, pd.DataFrame]:
"""
dividend_types can include:
dividend_types: List[str] = ('Income', 'Distribution')
dividend_types: List[str] = ('Income', 'Distribution', 'Return of Capital', 'Accumulation')
"""
if isinstance(tickers, list):
tickers_ = tickers
elif isinstance(tickers, dict):
tickers_ = list(tickers.keys())
else:
raise NotImplemented(f"type={type(tickers)}")
divs = {}
divs_1y = {}
for ticker in tickers_:
div = fetch_dividend_history(ticker=ticker)
if not div.empty:
valid_div_cond = div['dividend_type'].apply(lambda x: x in dividend_types)
valid_div = div.loc[valid_div_cond, :].set_index('ex_date') # set ex_date index
if np.any(valid_div.index.duplicated()): # aggregate dividend by sum of non-unique distributions
def sum_unique(s):
return s.unique().sum()
valid_div = valid_div.groupby('declared_date', sort=False, as_index=True).agg(
declared_date=('declared_date', 'first'),
record_date=('record_date', 'first'),
payable_date=('payable_date', 'first'),
dividend_amount=('dividend_amount', sum_unique),
dividend_frequency=('dividend_frequency', 'first'),
dividend_type=('dividend_type', 'first')
)
if not valid_div.empty and len(valid_div.index) > 0:
valid_div.index = pd.to_datetime(valid_div.index)
valid_div = valid_div.sort_index()
valid_div_amount = valid_div['dividend_amount']
divs[ticker] = valid_div_amount
divs_1y[ticker] = valid_div_amount.rolling("365D").sum() # assume 365 B days in year
divs = pd.DataFrame.from_dict(divs, orient='columns').reindex(columns=tickers)
divs_1y = pd.DataFrame.from_dict(divs_1y, orient='columns').reindex(columns=tickers)
if isinstance(tickers, dict):
divs = divs.rename(tickers, axis=1)
divs_1y = divs_1y.rename(tickers, axis=1)
return divs, divs_1y
#################### Helper functions ####################
def instrument_to_active_ticker(instrument: str = 'ES1 Index', num: int = 1) -> str:
"""
ES1 Index to ES{num} Index
Z1 Index to Z 1 Index
"""
head = contract_to_instrument(instrument)
ticker_split = instrument.split(' ')
mid = "" if len(ticker_split[0]) > 1 else " "
active_ticker = f"{head}{mid}{num} {ticker_split[-1]}"
return active_ticker
def contract_to_instrument(future: str) -> str:
"""
ES1 Index to ES Index
"""
ticker_split_wo_num = re.sub('\d+', '', future).split()
return ticker_split_wo_num[0]
"""
def fetch_option_underlying_tickers_from_isins(isins: List[str] = ['DE000C77PRU9', 'YY0160552733']) -> pd.DataFrame:
tickers = {f"/cusip/{x} Corp": x for x in isins}
# tickers = {f"{x}@BGN Corp": x for x in isins}
df = blp.bdp(list(tickers.keys()), "PARSEKYABLE_DES")
print(df)
df = blp.bdp(list(tickers.keys()), "OPT_UNDL_TICKER")
print(df)
df.index = df.index.map(tickers) # map back to isins
df = df.reindex(index=isins)
return df
"""
class UnitTests(Enum):
FIELD_TIMESERIES_PER_TICKERS = 1
FIELDS_TIMESERIES_PER_TICKER = 2
FUNDAMENTALS = 3
ACTIVE_FUTURES = 4
CONTRACT_TABLE = 5
IMPLIED_VOL_TIME_SERIES = 6
BOND_INFO = 7
LAST_PRICES = 8
CDS_INFO = 9
BALANCE_DATA = 10
TICKERS_FROM_ISIN = 11
# OPTION_UNDERLYING_FROM_ISIN = 14
DIVIDEND = 12
def run_unit_test(unit_test: UnitTests):
pd.set_option('display.max_columns', 500)
if unit_test == UnitTests.FIELD_TIMESERIES_PER_TICKERS:
#df = fetch_field_timeseries_per_tickers(tickers=['ES1 Index', 'ES2 Index', 'ES3 Index'], field='PX_LAST',
# CshAdjNormal=False, CshAdjAbnormal=False, CapChg=False)
# df = fetch_field_timeseries_per_tickers(tickers=['CGS1U5 CBGN Curncy', 'CGS1U5 DRSK Curncy', 'CGS1U5 BEST Curncy'], field='PX_LAST')
df = fetch_field_timeseries_per_tickers(tickers=['EUR003M Index'], field='PX_LAST')
print(df)
elif unit_test == UnitTests.FIELDS_TIMESERIES_PER_TICKER:
df = fetch_fields_timeseries_per_ticker(ticker='ES1 Index', fields=['PX_LAST', 'FUT_DAYS_EXP'])
print(df)
elif unit_test == UnitTests.FUNDAMENTALS:
df = fetch_fundamentals(tickers=['AAPL US Equity', 'BAC US Equity'],
fields=['Security_Name', 'GICS_Sector_Name', 'CRNCY'])
print(df)
elif unit_test == UnitTests.ACTIVE_FUTURES:
field_data = fetch_active_futures(generic_ticker='ES1 Index')
print(field_data)
elif unit_test == UnitTests.CONTRACT_TABLE:
df = fetch_futures_contract_table(ticker="NK1 Index")
print(df)
elif unit_test == UnitTests.IMPLIED_VOL_TIME_SERIES:
# df = fetch_vol_timeseries(ticker='SPX Index', vol_fields=[IMPVOL_FIELDS_MNY_30DAY, IMPVOL_FIELDS_MNY_60DAY,
# IMPVOL_FIELDS_MNY_3MTH, IMPVOL_FIELDS_MNY_6MTH,
# IMPVOL_FIELDS_MNY_12M])
df = fetch_vol_timeseries(ticker='EURUSD Curncy', vol_fields=['1M_CALL_IMP_VOL_10DELTA_DFLT',
'1M_PUT_IMP_VOL_10DELTA_DFLT'])
print(df)
elif unit_test == UnitTests.LAST_PRICES:
fx_prices = fetch_last_prices()
print(fx_prices)
elif unit_test == UnitTests.BOND_INFO:
data = fetch_bonds_info()
print(data)
elif unit_test == UnitTests.CDS_INFO:
data = fetch_cds_info()
print(data)
elif unit_test == UnitTests.BALANCE_DATA:
data = fetch_balance_data(tickers=['ABI BB Equity', 'T US Equity', 'JPM US Equity', 'BAC US Equity'])
print(data)
elif unit_test == UnitTests.TICKERS_FROM_ISIN:
df = fetch_tickers_from_isins()
print(df)
elif unit_test == UnitTests.DIVIDEND:
this = fetch_dividend_history(ticker='SDHA LN Equity')
print(this)
divs, divs_1y = fetch_div_yields(tickers=['AHYG SP Equity'])
print(divs_1y)
"""
elif unit_test == UnitTests.OPTION_UNDERLYING_FROM_ISIN:
df = fetch_option_underlying_tickers_from_isins()
print(df)
"""
if __name__ == '__main__':
unit_test = UnitTests.FIELD_TIMESERIES_PER_TICKERS
is_run_all_tests = False
if is_run_all_tests:
for unit_test in UnitTests:
run_unit_test(unit_test=unit_test)
else:
run_unit_test(unit_test=unit_test)