-
Notifications
You must be signed in to change notification settings - Fork 40
/
_pkgdown.yml
223 lines (222 loc) · 9.82 KB
/
_pkgdown.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
navbar:
title: ~
type: default
left:
- icon: fa-home
href: index.html
- text: Reference
href: reference/index.html
- text: Articles
menu:
- text: Install the Azure ML SDK for R
href: articles/installation.html
- text: Set up an Azure ML workspace
href: articles/configuration.html
- text: Train and deploy your first model with Azure ML
href: articles/train-and-deploy-first-model.html
- text: Train a TensorFlow model
href: articles/train-with-tensorflow.html
- text: Hyperparameter tune a Keras model
href: articles/hyperparameter-tune-with-keras.html
- text: Deploy a web service to Azure Kubernetes Service
href: articles/deploy-to-aks.html
- text: ---
- text: Guides
- text: Building custom Docker images for training and deployment
href: articles/building-custom-docker-images.html
- text: Deploying models
href: articles/deploying-models.html
- text: Troubleshooting
href: articles/troubleshooting.html
- text: News
href: news/index.html
reference:
- title: Installation
desc:
contents:
- '`install_azureml`'
- title: Workspaces
desc: Functions for managing workspace resources. A **Workspace** is the top-level resource for Azure Machine Learning. It provides a centralized place to work with all the artifacts you create when you use Azure ML.
contents:
- '`create_workspace`'
- '`get_workspace`'
- '`service_principal_authentication`'
- '`load_workspace_from_config`'
- '`write_workspace_config`'
- '`get_default_datastore`'
- '`set_default_datastore`'
- '`delete_workspace`'
- '`list_workspaces`'
- '`get_workspace_details`'
- '`get_default_keyvault`'
- '`set_secrets`'
- '`get_secrets`'
- '`delete_secrets`'
- '`list_secrets`'
- '`service_principal_authentication`'
- '`interactive_login_authentication`'
- title: Compute targets
desc: Functions for managing compute resources. A **Compute Target** is a designated compute resource where you run your scripts or host your service deployments. Compute targets make it easy to change your compute environment without changing your code. Supported compute target types in the R SDK include `AmlCompute` and `AksCompute`.
contents:
- '`create_aml_compute`'
- '`list_nodes_in_aml_compute`'
- '`update_aml_compute`'
- '`create_aks_compute`'
- '`get_aks_compute_credentials`'
- '`attach_aks_compute`'
- '`detach_aks_compute`'
- '`get_compute`'
- '`wait_for_provisioning_completion`'
- '`list_supported_vm_sizes`'
- '`delete_compute`'
- title: Working with data
desc: Functions for accessing your data in Azure Storage services. A **Datastore** is attached to a workspace and is used to store connection information to an Azure storage service.
contents:
- '`upload_files_to_datastore`'
- '`upload_to_datastore`'
- '`download_from_datastore`'
- '`get_datastore`'
- '`register_azure_blob_container_datastore`'
- '`register_azure_file_share_datastore`'
- '`register_azure_sql_database_datastore`'
- '`register_azure_postgre_sql_datastore`'
- '`register_azure_data_lake_gen2_datastore`'
- '`unregister_datastore`'
- title: Working with datasets
desc: Functions for managing datasets. An Azure Machine Learning **Dataset** allows you to interact with data in your datastores and package your data into a consumable object for machine learning tasks. Datasets can be created from local files, public urls, or specific file(s) in your datastores. Azure ML supports Dataset types of `FileDataset` and `TabularDataset`.
contents:
- '`register_dataset`'
- '`unregister_all_dataset_versions`'
- '`get_dataset_by_name`'
- '`get_dataset_by_id`'
- '`get_input_dataset_from_run`'
- '`create_file_dataset_from_files`'
- '`get_file_dataset_paths`'
- '`download_from_file_dataset`'
- '`mount_file_dataset`'
- '`skip_from_dataset`'
- '`take_from_dataset`'
- '`take_sample_from_dataset`'
- '`random_split_dataset`'
- '`create_tabular_dataset_from_parquet_files`'
- '`create_tabular_dataset_from_delimited_files`'
- '`create_tabular_dataset_from_json_lines_files`'
- '`create_tabular_dataset_from_sql_query`'
- '`drop_columns_from_dataset`'
- '`keep_columns_from_dataset`'
- '`filter_dataset_after_time`'
- '`filter_dataset_before_time`'
- '`filter_dataset_between_time`'
- '`filter_dataset_from_recent_time`'
- '`define_timestamp_columns_for_dataset`'
- '`load_dataset_into_data_frame`'
- '`convert_to_dataset_with_csv_files`'
- '`convert_to_dataset_with_parquet_files`'
- '`data_type_bool`'
- '`data_type_datetime`'
- '`data_type_double`'
- '`data_type_long`'
- '`data_type_string`'
- '`promote_headers_behavior`'
- '`data_path`'
- '`dataset_consumption_config`'
- title: Environments
desc: Functions for managing environments. An Azure Machine Learning **Environment** allows you to create, manage, and reuse the software dependencies required for training and deployment. Environments specify the R packages, environment variables, and software settings around your training and scoring scripts for your containerized training runs and deployments. They are managed and versioned entities within your Azure ML workspace that enable reproducible, auditable, and portable machine learning workflows across different compute targets. For more details, see `r_environment()`.
contents:
- '`r_environment`'
- '`cran_package`'
- '`github_package`'
- '`register_environment`'
- '`get_environment`'
- '`container_registry`'
- title: Training & experimentation
desc: Functions for managing experiments and runs. An **Experiment** is a grouping of the collection of runs from a specified script. A **Run** represents a single trial of an experiment. A run is the object used to monitor the asynchronous execution of a trial, log metrics and store output of the trial, and to analyze results and access artifacts generated by the trial. The following run types are supported - `ScriptRun` (for Estimator experiments) and `HyperDriveRun` (for HyperDrive experiments). For functions that are specific only to HyperDriveRuns, see the **Hyperparameter tuning** reference sections. An **Estimator** wraps run configuration information for specifying details of executing an R script. Running an Estimator experiment (using `submit_experiment()`) will return a `ScriptRun` object and execute your training script on the specified compute target.
contents:
- '`experiment`'
- '`get_runs_in_experiment`'
- '`submit_experiment`'
- '`wait_for_run_completion`'
- '`estimator`'
- '`start_logging_run`'
- '`complete_run`'
- '`get_current_run`'
- '`get_run`'
- '`get_run_details`'
- '`get_run_details_with_logs`'
- '`get_run_metrics`'
- '`get_secrets_from_run`'
- '`cancel_run`'
- '`get_run_file_names`'
- '`download_file_from_run`'
- '`download_files_from_run`'
- '`upload_files_to_run`'
- '`upload_folder_to_run`'
- '`log_metric_to_run`'
- '`log_accuracy_table_to_run`'
- '`log_confusion_matrix_to_run`'
- '`log_image_to_run`'
- '`log_list_to_run`'
- '`log_predictions_to_run`'
- '`log_residuals_to_run`'
- '`log_row_to_run`'
- '`log_table_to_run`'
- '`plot_run_details`'
- '`cran_package`'
- title: Hyperparameter tuning
desc: Functions for configuring and managing hyperparameter tuning (HyperDrive) experiments. Azure ML's HyperDrive functionality enables you to automate hyperparameter tuning of your machine learning models. For example, you can define the parameter search space as discrete or continuous, and a sampling method over the search space as random, grid, or Bayesian. Also, you can specify a primary metric to optimize in the hyperparameter tuning experiment, and whether to minimize or maximize that metric. You can also define early termination policies in which poorly performing experiment runs are canceled and new ones started.
contents:
- '`hyperdrive_config`'
- '`random_parameter_sampling`'
- '`grid_parameter_sampling`'
- '`bayesian_parameter_sampling`'
- '`choice`'
- '`randint`'
- '`uniform`'
- '`quniform`'
- '`loguniform`'
- '`qloguniform`'
- '`normal`'
- '`qnormal`'
- '`lognormal`'
- '`qlognormal`'
- '`primary_metric_goal`'
- '`bandit_policy`'
- '`median_stopping_policy`'
- '`truncation_selection_policy`'
- '`get_best_run_by_primary_metric`'
- '`get_child_runs_sorted_by_primary_metric`'
- '`get_child_run_hyperparameters`'
- '`get_child_run_metrics`'
- title: Model management & deployment
desc: Functions for model management and deployment. Registering a model allows you to store and version your trained model in a workspace. A registered **Model** can then be deployed as a **Webservice** using Azure ML. If you would like to access all the assets needed to host a model as a web service without actually deploying the model, you can do so by packaging the model as a `ModelPackage`. You can deploy your model as a `LocalWebservice` (locally), `AciWebservice` (on Azure Container Instances), or `AksWebservice` (on Azure Kubernetes Service).
contents:
- '`get_model`'
- '`register_model`'
- '`register_model_from_run`'
- '`download_model`'
- '`deploy_model`'
- '`package_model`'
- '`delete_model`'
- '`get_model_package_container_registry`'
- '`get_model_package_creation_logs`'
- '`pull_model_package_image`'
- '`save_model_package_files`'
- '`wait_for_model_package_creation`'
- '`inference_config`'
- '`get_webservice`'
- '`wait_for_deployment`'
- '`get_webservice_logs`'
- '`get_webservice_keys`'
- '`generate_new_webservice_key`'
- '`get_webservice_token`'
- '`invoke_webservice`'
- '`delete_webservice`'
- '`aci_webservice_deployment_config`'
- '`update_aci_webservice`'
- '`aks_webservice_deployment_config`'
- '`update_aks_webservice`'
- '`local_webservice_deployment_config`'
- '`update_local_webservice`'
- '`delete_local_webservice`'
- '`reload_local_webservice_assets`'
- '`resource_configuration`'