forked from mit-plv/koika
-
Notifications
You must be signed in to change notification settings - Fork 1
/
verilog.ml
603 lines (538 loc) · 25.4 KB
/
verilog.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
(*! Verilog backend !*)
open Common
open Cuttlebone
open Cuttlebone.Util
open Cuttlebone.Graphs
(* TODO: What to do with bit 0?
*)
let add_reset_lines = true
(* Phase I: IO declarations *)
type kind_io =
| Clock
| Reset
| CanFire of string
| InRule of string * Common.reg_signature * Extr.rwdata_field
| OutRule of string * Common.reg_signature * Extr.rwdata_field
| DebugEn of string
| DebugDataIn of string
| DebugDataOut of string
let field_to_string (field: Extr.rwdata_field) =
match field with
| Rwdata_r0 -> "_read0"
| Rwdata_r1 -> "_read1"
| Rwdata_w0 -> "_write0"
| Rwdata_w1 -> "_write1"
| Rwdata_data0 -> "_data0"
| Rwdata_data1 -> "_data1"
let rwcircuit_to_string (rwc: rwcircuit) =
match rwc with
| Rwcircuit_rwdata (reg, field) ->
reg.reg_name ^ field_to_string field
| Rwcircuit_canfire -> "_canfire"
let kind_io_to_string kind_io =
match kind_io with
| Clock -> "CLK"
| Reset -> "RST_N"
| CanFire(rule_name) -> "rule_" ^ rule_name ^ "_input__canfire"
| OutRule(rule_name, reg, port_name) -> "rule_"^ rule_name ^ "_output_" ^ reg.reg_name ^ field_to_string port_name
| InRule(rule_name, reg, port_name) -> "rule_"^ rule_name ^ "_input_" ^ reg.reg_name ^ field_to_string port_name
| DebugDataIn(reg_name) -> reg_name ^ "__overwrite_data"
| DebugDataOut(reg_name) -> reg_name ^ "__data"
| DebugEn(reg_name)-> reg_name ^ "__overwrite"
type io_decl =
| Input of kind_io * int
| Output of kind_io * int
let io_decl_to_string (io_decl:io_decl) =
match io_decl with
| Input (w, sz) -> if sz = 1
then "input " ^ kind_io_to_string w
else "input " ^ "[" ^ string_of_int (sz-1) ^ ":0] " ^ kind_io_to_string w
| Output (w, sz) -> if sz = 1
then "output " ^ kind_io_to_string w
else "output " ^ "[" ^ string_of_int (sz-1) ^ ":0] " ^ kind_io_to_string w
type io_decls = io_decl list
let io_from_reg ?(debug=false) (root: circuit_root) : io_decls =
let reg_name = root.root_reg.reg_name in
let reg_type = reg_type root.root_reg in
if debug
then [Input (DebugDataIn reg_name, typ_sz reg_type);
Input (DebugEn reg_name, 1);
Output (DebugDataOut reg_name, typ_sz reg_type)]
else []
let clock_and_reset : io_decls =
[
Input (Clock, 1);
Input (Reset, 1);
]
let io_from_bundles (c: circuit) =
match c.node with
| CBundle (rule_name, regs) ->
List.flatten
@@ List.map (fun (reg,_) ->
[ Output(OutRule(rule_name, reg, Rwdata_data0), typ_sz @@ reg_type reg);
Output(OutRule(rule_name, reg, Rwdata_data1), typ_sz @@ reg_type reg);
Output(OutRule(rule_name, reg, Rwdata_r0), 1);
Output(OutRule(rule_name, reg, Rwdata_r1), 1);
Output(OutRule(rule_name, reg, Rwdata_w0), 1);
Output(OutRule(rule_name, reg, Rwdata_w1), 1);
Input(CanFire(rule_name), 1);
Input(InRule(rule_name, reg, Rwdata_r0),1);
Input(InRule(rule_name, reg, Rwdata_r1),1);
Input(InRule(rule_name, reg, Rwdata_w0),1);
Input(InRule(rule_name, reg, Rwdata_w1),1);
Input(InRule(rule_name, reg, Rwdata_data0), typ_sz @@ reg_type reg);
Input(InRule(rule_name, reg, Rwdata_data1), typ_sz @@ reg_type reg);
])
regs
| CBundleRef (_size, _bundle, _rwc) ->
[]
| _ -> []
let io_declarations (circuit: circuit_graph) : io_decls =
clock_and_reset @ (List.flatten @@ (List.map io_from_reg (circuit.graph_roots)) @ (List.map io_from_bundles circuit.graph_nodes))
(* Phase II: Internal declarations
We declare the internal registers, and one wire per subcircuit i.e
one per nodes of (circuit_nets: circuit Hashtbl.t). The signal
are all named _n except for the one where a name has been
given by the user; then we name them givenname_n. The sizes
of registers and internal wires are also declared in that phase.
*)
type internal_decl =
| Reg of reg_signature
| Wire of string * int
| Nothing
let internal_decl_to_string (internal_decl: internal_decl) =
match internal_decl with
| Nothing -> ""
| Reg (r) ->
let sz = typ_sz (reg_type r) in
let init = Cuttlebone.Util.bits_of_value r.reg_init in
(if sz <= 1
then "\treg " ^ r.reg_name
else "\treg " ^ "[" ^ string_of_int (sz - 1) ^ ":0] " ^ r.reg_name)
^ " = " ^ string_of_bits init ^ ";"
| Wire (w, sz) -> if sz <= 1
then "\twire " ^ w ^ ";"
else "\twire " ^ "[" ^ string_of_int (sz-1) ^ ":0] " ^ w ^ ";"
type internal_decls = internal_decl list
let internal_decl_for_reg (root: circuit_root) =
Reg(root.root_reg)
let fn1_sz fn =
let fsig = Cuttlebone.Extr.PrimSignatures.coq_Sigma1 (Bits1 fn) in
typ_sz (Cuttlebone.Util.retSig fsig)
let fn2_sz fn =
let fsig = Cuttlebone.Extr.PrimSignatures.coq_Sigma2 (Bits2 fn) in
typ_sz (Cuttlebone.Util.retSig fsig)
let circuit_sz (c: circuit) =
match c.node with
| CMux (n, _, _, _)
| CAnnot (n, _, _) -> n
| CConst l -> Array.length l
| CUnop (fn, _) -> fn1_sz fn
| CBinop (fn, _, _) -> fn2_sz fn
| CExternal { f; _ } -> typ_sz f.ffi_rettype
| CReadRegister r_sig -> typ_sz (reg_type r_sig)
| CBundle (_, _) -> 0
| CBundleRef (sz, _, _) -> sz
let internal_decl_for_net
(environment: (int, string) Hashtbl.t)
(gensym : int ref)
(c: circuit)
=
let name_ptr = !gensym in
gensym := !gensym + 1;
let name_net = "_" ^ (string_of_int name_ptr) in
Hashtbl.add environment c.tag name_net;
let sz = circuit_sz c in
match c.node with
| CAnnot (_, name , _) ->
Hashtbl.add environment c.tag (name ^ name_net);
Wire (name ^ name_net, sz) (* Prefix with the name given by the user *)
| CBundle (_,_) -> Nothing
| _ -> Wire (name_net, sz)
let internal_declarations (environment: (int, string) Hashtbl.t) (circuit: circuit_graph) =
let gensym = ref 0 in
let reg_declarations = List.map internal_decl_for_reg (circuit.graph_roots) in
let internal_declarations = List.map
(internal_decl_for_net
environment
gensym)
circuit.graph_nodes
in
reg_declarations @ internal_declarations
(* Phase III: Continuous assignments
Every node in the netlist (circuit_nets: circuit Hashtbl.t)
corresponds to one verilog assign statement that is declaring how
the left hand side wire gets computed from registers and wires.
We also assign the output wires to peek in the registers
For custom functions we create an instance of the module in verilog
for each such CustomFn encountered.
*)
type expression =
(* | EQuestionMark of size_t *)
| EMux of size_t * string * string * string
| EIO of size_t * string
| EConst of size_t * string
| EUnop of Extr.PrimTyped.fbits1 * string
| EBinop of Extr.PrimTyped.fbits2 * string * string
| EExternal of ffi_signature * string
| EReadRegister of reg_signature
| EAnnot of size_t * string * string
type assignment = string * expression (* LHS, RHS *)
let failwith_unlowered () =
failwith "The verilog backend doesn't support sext, zextl and zextr: they must be elaborated away by the compiler."
let assignment_to_string' (gensym: int ref) (assignment: assignment) =
let (lhs,expr) = assignment in
let default_left = "\tassign " ^ lhs ^ " = " in
(match expr with
(* | EQuestionMark _ -> default_left ^ "0" (\* TODO check other ways to do *\) *)
| EMux (_, sel, t, f) -> default_left ^ sel ^ " ? " ^ t ^ " : " ^ f
| EIO (_sz, s) -> default_left ^ s
| EConst (_sz, s) -> default_left ^ s
| EUnop (fn, arg1) ->
(match fn with
| Not _ -> default_left ^ "~" ^ arg1
| Rev sz ->
let rec loop n = if n = 0
then Printf.sprintf "%s[%d]" arg1 n
else Printf.sprintf "%s[%d], " arg1 n ^ loop (n - 1) in
let rhs = if sz = 0 || sz = 1
then lhs
else "{" ^ loop (sz-1) ^ "}" in
default_left ^ rhs
| Repeat (_, times) -> default_left ^ Printf.sprintf "{%d{%s}}" times arg1
| Slice (_, offset, slice_sz) -> default_left ^ arg1 ^ "[" ^ (string_of_int offset) ^ " +: " ^ string_of_int slice_sz ^ "]"
| SExt _ | ZExtL _ | ZExtR _ | Lowered _ -> failwith_unlowered ())
| EBinop (fn, arg1, arg2) ->
(match fn with
| Plus _ -> default_left ^ arg1 ^ " + " ^ arg2
| Minus _ -> default_left ^ arg1 ^ " - " ^ arg2
| Mul _ -> default_left ^ arg1 ^ " * " ^ arg2
| Compare (signed, cmp, _sz) ->
let cast = Printf.sprintf (if signed then "$signed(%s)" else "%s") in
let op = match cmp with CLt -> "<" | CGt -> ">" | CLe -> "<=" | CGe -> ">=" in
Printf.sprintf "\tassign %s = %s %s %s" lhs (cast arg1) op (cast arg2)
| Sel _ -> default_left ^ arg1 ^ "[" ^ arg2 ^ "]"
| IndexedSlice (_, slice_sz) -> default_left ^ arg1 ^ "[" ^ arg2 ^ " +: " ^ string_of_int slice_sz ^ "]"
| And _ -> default_left ^ arg1 ^ " & " ^ arg2
| Or _ -> default_left ^ arg1 ^ " | " ^ arg2
| Xor _ -> default_left ^ arg1 ^ " ^ " ^ arg2
| Lsl (_, _) -> default_left ^ arg1 ^ " << " ^ arg2
| Lsr (_, _) -> default_left ^ arg1 ^ " >> " ^ arg2
| Asr (_, _) -> default_left ^ "$signed(" ^ arg1 ^ ")" ^ " >>> " ^ arg2
| EqBits (_, negated) -> default_left ^ arg1 ^ (if negated then " != " else " == ") ^ arg2
| Concat (_, _) -> default_left ^ "{" ^ arg1 ^ ", " ^ arg2 ^ "}"
| SliceSubst _ -> failwith_unlowered ())
| EExternal (ffi, arg) ->
let number_s = !gensym in (* FIXME use the gensym from common.ml *)
gensym := !gensym + 1 ;
"\t"^ ffi.ffi_name ^ " " ^ (ffi.ffi_name ^ "__instance__" ^ string_of_int number_s) ^
"(CLK, " ^ arg ^ "," ^ lhs ^ ")"
| EReadRegister r -> default_left ^ r.reg_name
| EAnnot (_, _, rhs) -> default_left ^ rhs) ^ ";"
let expr_sz (e: expression) =
match e with
| EMux (sz, _, _, _)
| EIO (sz, _)
| EConst (sz, _) -> sz
| EUnop (fn, _) -> fn1_sz fn
| EBinop (fn, _, _) -> fn2_sz fn
| EExternal (fn, _) -> typ_sz fn.ffi_rettype
| EReadRegister r_sig -> typ_sz (reg_type r_sig)
| EAnnot (sz, _, _) -> sz
let assignment_to_string (gensym: int ref) (assignment: assignment) =
Printf.sprintf "%s // %d" (assignment_to_string' gensym assignment) (expr_sz @@ snd assignment)
type continous_assignments = assignment list
let assignment_node
(environment: (int, string) Hashtbl.t)
(c: circuit)
: continous_assignments
=
let env = Hashtbl.find environment in
let node = c.node in
match node with
| CBundleRef (sz, bundle , rwc) ->
begin
match bundle.node with
| CBundle (rule_name, _) ->
[(env c.tag, EIO(sz, "rule_"^rule_name^ "_input_" ^ rwcircuit_to_string rwc))]
| _ -> assert false
end
| CBundle (rule_name, list_assigns) ->
List.flatten
@@ List.map (fun (reg,rwdata) ->
let sz = circuit_sz rwdata.write0 in
[("rule_"^rule_name^"_output_"^reg.reg_name^"_data0", EIO(1, env rwdata.data0.tag));
("rule_"^rule_name^"_output_"^reg.reg_name^"_data1", EIO(1, env rwdata.data1.tag));
("rule_"^rule_name^"_output_"^reg.reg_name^"_read0", EIO(1, env rwdata.read0.tag));
("rule_"^rule_name^"_output_"^reg.reg_name^"_read1", EIO(1, env rwdata.read1.tag));
("rule_"^rule_name^"_output_"^reg.reg_name^"_write0", EIO(sz, env rwdata.write0.tag));
("rule_"^rule_name^"_output_"^reg.reg_name^"_write1", EIO(sz, env rwdata.write1.tag))])
list_assigns
| _ ->
begin
let rhs_name = env c.tag in (* And by then the ptr has been given a name. *)
let expr = match node with
(* Assumes no dangling pointers *)
| CMux (sz, c_sel, c_t, c_f) -> EMux (sz,
env c_sel.tag,
env c_t.tag,
env c_f.tag)
| CConst l -> EConst (Array.length l, string_of_bits l) (* TODO *)
| CUnop (fn, c_1) -> EUnop (fn, env c_1.tag)
| CBinop (fn, c_1, c_2) -> EBinop (fn, env c_1.tag, env c_2.tag)
| CExternal { f; arg; _ } -> EExternal (f, env arg.tag)
| CReadRegister r_sig -> EReadRegister r_sig
| CAnnot (sz, name_rhs, c) -> EAnnot (sz, name_rhs, env c.tag)
| _ -> assert false
in
[(rhs_name, expr)]
end
let continous_assignments
?(debug=false)
(environment: (int, string) Hashtbl.t)
(circuit: circuit_graph)
: continous_assignments
=
let maybe_debug = if debug then
(List.map (fun root ->
(root.root_reg.reg_name ^ "__data",
EReadRegister root.root_reg))
(circuit.graph_roots))
else []
in
maybe_debug @
List.flatten @@ List.map
(assignment_node
environment)
circuit.graph_nodes
(* Phase IV: Update of register
The update of the registers are done in parallel for all the
registers: on every rising edge of clock, if reset is low then we
write the initial value of the register, otherwise if overwrite is
high, we write the value coming from the environment, otherwise we
write the value computed by the root wire of that register.
*)
type statement =
{ upd_reg_name: string; upd_reg_init: string; upd_reg_net: string }
open Printf
let format_assign_init { upd_reg_name; upd_reg_init; _ } =
sprintf "%s <= %s;" upd_reg_name upd_reg_init
let format_assign_net ~debug { upd_reg_name; upd_reg_net; _ } =
let assignment =
sprintf "%s <= %s;" upd_reg_name upd_reg_net in
if debug then
let reg_overwrite = upd_reg_name ^ "__overwrite" in
let reg_overwrite_data = upd_reg_name ^ "__overwrite_data" in
sprintf "if (%s) begin
%s <= %s;
end else begin
%s
end"
reg_overwrite upd_reg_name reg_overwrite_data assignment
else
assignment
let format_always_block' body =
Printf.sprintf " always @(posedge CLK) begin\n%s\n end" body
let format_always_block_with_reset ?(debug=false) statements =
let sep = "\n " in
let inits = List.map format_assign_init statements in
let nets = List.map (format_assign_net ~debug) statements in
format_always_block'
(Printf.sprintf "\
if (!RST_N) begin
%s
end else begin
%s
end" (String.concat sep inits) (String.concat sep nets))
let format_always_block_no_reset ?(debug=false) statements =
let sep = "\n " in
let nets = List.map (format_assign_net ~debug) statements in
format_always_block'
(Printf.sprintf " %s" (String.concat sep nets))
type statements = statement list
let statements
(environment: (int, string) Hashtbl.t)
(circuit: circuit_graph)
: statements
=
List.map (fun root ->
let upd_reg_name = root.root_reg.reg_name in
let upd_reg_init = string_of_bits (Cuttlebone.Util.bits_of_value root.root_reg.reg_init) in
let upd_reg_net = Hashtbl.find environment root.root_circuit.tag in
{ upd_reg_name; upd_reg_init; upd_reg_net })
(circuit.graph_roots)
(* Generate BSV wrapper *)
module OrderedReg = struct
type t = reg_signature
let compare (a:reg_signature) (b:reg_signature) =
compare (a.reg_name) (b.reg_name)
end
module SS = Set.Make(OrderedReg) (* Set of registers touched by a rule *)
type maprules =
(* A map from rules -> Set of registers *)
SS.t StringMap.t
let bsv_ifcs_of_decls (decls: io_decls) =
List.fold_right (fun (decl:io_decl) map ->
match decl with
| Input (k, _sz) -> (match k with
| InRule (rule_name, reg, _) -> StringMap.update
rule_name
(fun m -> match m with
| Some s -> Some(SS.add reg s)
| None -> Some(SS.add reg SS.empty))
map
| _ -> map)
| Output (k, _sz) -> (match k with
| OutRule (rule_name, reg, _) -> StringMap.update
rule_name
(fun m -> match m with
| Some s -> Some(SS.add reg s)
| None -> Some(SS.add reg SS.empty))
map
| _ -> map)
) decls StringMap.empty
let generate_ifc (ifc_name:string) (set: SS.t) =
(Printf.sprintf
"interface Ifc%s;\n%sendinterface\n"
ifc_name
(SS.fold
(fun elt s ->
let read0 = Printf.sprintf "\tmethod Bit#(%d) read0_%s();\n" (typ_sz @@ typ_of_value elt.reg_init) elt.reg_name in
let read0v = Printf.sprintf "\tmethod Bit#(1) vread0_%s();\n" elt.reg_name in
let read0s = Printf.sprintf "\tmethod Action sread0_%s();\n" elt.reg_name in
let read1 = Printf.sprintf "\tmethod Bit#(%d) read1_%s();\n" (typ_sz @@ typ_of_value elt.reg_init) elt.reg_name in
let read1v = Printf.sprintf "\tmethod Bit#(1) vread1_%s();\n" elt.reg_name in
let read1s = Printf.sprintf "\tmethod Action sread1_%s();\n" elt.reg_name in
let write0 = Printf.sprintf "\t (* always_enabled *) method Action write0_%s(Bit#(%d) data);\n" elt.reg_name (typ_sz @@ typ_of_value elt.reg_init) in
let write0v = Printf.sprintf "\tmethod Bit#(1) vwrite0_%s();\n" elt.reg_name in
let write0s = Printf.sprintf "\tmethod Action swrite0_%s();\n" elt.reg_name in
let write1 = Printf.sprintf "\t (* always_enabled *) method Action write1_%s(Bit#(%d) data);\n" elt.reg_name (typ_sz @@ typ_of_value elt.reg_init) in
let write1v = Printf.sprintf "\tmethod Bit#(1) vwrite1_%s();\n" elt.reg_name in
let write1s = Printf.sprintf "\tmethod Action swrite1_%s();\n" elt.reg_name in
s ^ read0 ^ read0v ^ read0s ^ read1 ^ read1v ^ read1s ^ write0 ^ write0v ^ write0s ^ write1 ^ write1v ^ write1s)
set
""))
let generate_ifcs (map: SS.t StringMap.t) =
StringMap.fold (fun rule_name elt s -> s ^ generate_ifc rule_name elt) map ""
let generate_wrapper_ifc (ifc_name:string) (ifc: SS.t) =
(Printf.sprintf
"\tinterface Ifc%s ifc_%s;\n%sendinterface\n"
ifc_name ifc_name
(SS.fold
(fun elt s ->
let read0 = Printf.sprintf "\t\tmethod rule_%s_output_%s_data0 read0_%s();\n"
ifc_name
elt.reg_name
elt.reg_name in
let read0v = Printf.sprintf "\t\tmethod rule_%s_output_%s_read0 vread0_%s();\n"
ifc_name
elt.reg_name
elt.reg_name in
let read0s = Printf.sprintf "\t\tmethod sread0_%s() enable(rule_%s_input_%s_read0);\n"
elt.reg_name
ifc_name
elt.reg_name in
let read1 = Printf.sprintf "\t\tmethod rule_%s_output_%s_data1 read1_%s();\n"
ifc_name
elt.reg_name
elt.reg_name in
let read1v = Printf.sprintf "\t\tmethod rule_%s_output_%s_read1 vread1_%s();\n"
ifc_name
elt.reg_name
elt.reg_name in
let read1s = Printf.sprintf "\t\tmethod sread1_%s() enable(rule_%s_input_%s_read1);\n"
elt.reg_name
ifc_name
elt.reg_name in
let write0 = Printf.sprintf "\t\tmethod write0_%s(rule_%s_input_%s_data0) enable((*inhigh*) EN%s0);\n"
elt.reg_name
ifc_name
elt.reg_name
(ifc_name^elt.reg_name) in
let write0v = Printf.sprintf "\t\tmethod rule_%s_output_%s_write0 vwrite0_%s();\n"
ifc_name
elt.reg_name
elt.reg_name in
let write0s = Printf.sprintf "\t\tmethod swrite0_%s() enable(rule_%s_input_%s_write0);\n"
elt.reg_name
ifc_name
elt.reg_name in
let write1 = Printf.sprintf "\t\tmethod write1_%s(rule_%s_input_%s_data1) enable((*inhigh*) EN%s1);\n"
elt.reg_name
ifc_name
elt.reg_name
(ifc_name^elt.reg_name) in
let write1v = Printf.sprintf "\t\tmethod rule_%s_output_%s_write1 vwrite1_%s();\n"
ifc_name
elt.reg_name
elt.reg_name in
let write1s = Printf.sprintf "\t\tmethod swrite1_%s() enable(rule_%s_input_%s_write1);\n"
elt.reg_name
ifc_name
elt.reg_name in
s ^ read0 ^ read1 ^ write1 ^ write0 ^ read0v ^ read1v ^ write0v ^ write1v ^ read0s ^ read1s ^ write0s ^ write1s)
ifc
""))
(* What is left to do on that side: create the port for the rdy *)
(* Hard wire the canfire to 1 *)
let generate_wrapper_ifcs (map: SS.t StringMap.t) =
StringMap.fold (fun rule_name elt s -> s ^ "\n" ^ generate_wrapper_ifc rule_name elt) map ""
let generate_list_method (ifc_name:string) (ifc: SS.t) =
List.fold_right (fun el accString ->
if String.length(accString) = 0
then el
else el ^ ", " ^ accString
)
(SS.fold (fun reg acc ->
(Printf.sprintf "ifc_%s_read0_%s" ifc_name reg.reg_name) ::
(Printf.sprintf "ifc_%s_read1_%s" ifc_name reg.reg_name) ::
(Printf.sprintf "ifc_%s_write0_%s" ifc_name reg.reg_name) ::
(Printf.sprintf "ifc_%s_write1_%s" ifc_name reg.reg_name) ::
(Printf.sprintf "ifc_%s_sread0_%s" ifc_name reg.reg_name) ::
(Printf.sprintf "ifc_%s_sread1_%s" ifc_name reg.reg_name) ::
(Printf.sprintf "ifc_%s_swrite0_%s" ifc_name reg.reg_name) ::
(Printf.sprintf "ifc_%s_swrite1_%s" ifc_name reg.reg_name) ::
(Printf.sprintf "ifc_%s_vread0_%s" ifc_name reg.reg_name) ::
(Printf.sprintf "ifc_%s_vread1_%s" ifc_name reg.reg_name) ::
(Printf.sprintf "ifc_%s_vwrite0_%s" ifc_name reg.reg_name) ::
(Printf.sprintf "ifc_%s_vwrite1_%s" ifc_name reg.reg_name) ::
acc) ifc []) ""
let generate_BVI (module_name: string) (map: SS.t StringMap.t) =
let string_methods = StringMap.fold (fun k v accString -> if (String.length(accString) = 0)
then generate_list_method k v
else generate_list_method k v ^ ", " ^ accString ) map "" in
let can_fire = StringMap.fold (fun rule_name _ accString -> Printf.sprintf "port rule_%s_input__canfire = 1;\n%s" rule_name accString) map "" in
(* let ports = Printf.sprintf "port %s = %s;" in *)
generate_ifcs map
^ Printf.sprintf "\ninterface Ifc%s;\n%sendinterface\n" module_name (StringMap.fold (fun rule_name _ s -> s ^ (Printf.sprintf "interface Ifc%s ifc_%s;\n" rule_name rule_name)) map "")
^ Printf.sprintf "import \"BVI\" %s = module mk%s(Ifc%s);\n default_clock clk(CLK);\n default_reset rstn(RST_N);\n%s\n%s" module_name module_name module_name can_fire (generate_wrapper_ifcs map)
^ Printf.sprintf "\nschedule (%s) CF (%s);\n" string_methods string_methods
^ Printf.sprintf "\nendmodule"
let main target_dpath (modname: string) (circuit: circuit_graph) =
let environment = Hashtbl.create 50 in
let instance_external_gensym = ref 0 in
let io_decls = List.sort_uniq (fun x y -> compare x y) @@ io_declarations circuit in
let bsv_ifcs = bsv_ifcs_of_decls io_decls in
let internal_decls = internal_declarations environment circuit in
let continous_assignments = continous_assignments environment circuit in
let string_io_decls = (List.map io_decl_to_string io_decls) in
let statements = statements environment circuit in
let print_verilog out () =
let header = "// -*- mode: verilog -*-" in
let string_prologue = "module " ^ modname ^ "(" ^ (String.concat ",\n\t" string_io_decls) ^ ");" in
let string_internal_decls = String.concat "\n" (List.map internal_decl_to_string internal_decls) in
let string_continous_assignments = String.concat "\n" (List.map (assignment_to_string instance_external_gensym) continous_assignments) in
let format_always_block = if add_reset_lines then format_always_block_with_reset else format_always_block_no_reset in
let string_statements = String.concat "\n\n" (List.map (fun s -> format_always_block [s]) statements) in
let string_epilogue = "endmodule" in
List.iter (Printf.fprintf out "%s\n")
[header;
string_prologue;
string_internal_decls;
string_continous_assignments;
string_statements;
string_epilogue] in
with_output_to_file (Filename.concat target_dpath (modname ^ ".v"))
print_verilog ();
with_output_to_file (Filename.concat target_dpath (modname ^ ".bsv"))
output_string (generate_BVI modname bsv_ifcs);