-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
189 lines (155 loc) · 8.53 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import sys
import torch
import logging
import numpy as np
from tqdm import tqdm
import multiprocessing
from datetime import datetime
import torchvision.transforms as T
import test
import utils.util as util
import utils.parser as parser
import utils.commons as commons
from losses import cosface_loss, ikt_loss
import utils.augmentations as augmentations
from nocplace_model import cosplace_network, vit_network
from datasets.test_dataset import TestDataset
from datasets.train_dataset import TrainDataset
from datasets.inherit_dataset import InheritDataset
import utils.tests as tests
torch.backends.cudnn.benchmark = True # Provides a speedup
args = parser.parse_arguments()
start_time = datetime.now()
args.output_folder = f"logs/{args.save_dir}/{start_time.strftime('%Y-%m-%d_%H-%M-%S')}"
commons.make_deterministic(args.seed)
commons.setup_logging(args.output_folder, console="debug")
logging.info(" ".join(sys.argv))
logging.info(f"Arguments: {args}")
logging.info(f"The outputs are being saved in {args.output_folder}")
#### Model
# model = cosplace_network.GeoLocalizationNet(args.backbone, args.fc_output_dim, args.train_all_layers)
model = vit_network.GeoLocalizationNet(args.backbone)
logging.info(f"There are {torch.cuda.device_count()} GPUs and {multiprocessing.cpu_count()} CPUs.")
if args.resume_model is not None:
logging.debug(f"Loading model from {args.resume_model}")
model_state_dict = torch.load(args.resume_model)
model.load_state_dict(model_state_dict)
model = model.to(args.device).train()
if args.use_ikt:
train_ds = InheritDataset(args.train_set_folder, image_size=args.image_size, resize_test_imgs=args.resize_test_imgs)
tests.inherit(args, train_ds, model)
del train_ds
#### Optimizer
criterion = torch.nn.CrossEntropyLoss()
if args.use_ikt:
criterion_ikt = ikt_loss.SoftTarget(args.T)
model_optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
#### Datasets
groups = [TrainDataset(args, args.train_set_folder + "_night", M=args.M, alpha=args.alpha, N=args.N, L=args.L,
current_group=n, min_images_per_class=args.min_images_per_class) for n in range(args.groups_num)]
# Each group has its own classifier, which depends on the number of classes in the group
classifiers = [cosface_loss.MarginCosineProduct(args.fc_output_dim, len(group)) for group in groups]
classifiers_optimizers = [torch.optim.Adam(classifier.parameters(), lr=args.classifiers_lr) for classifier in classifiers]
logging.info(f"Using {len(groups)} groups")
logging.info(f"The {len(groups)} groups have respectively the following number of classes {[len(g) for g in groups]}")
logging.info(f"The {len(groups)} groups have respectively the following number of images {[g.get_images_num() for g in groups]}")
val_ds = TestDataset(args.val_set_folder, queries_folder="queries_night",
positive_dist_threshold=args.positive_dist_threshold,
image_size=args.image_size, resize_test_imgs=args.resize_test_imgs)
logging.info(f"Validation set: {val_ds}")
#### Resume
if args.resume_train:
model, model_optimizer, classifiers, classifiers_optimizers, best_val_recall1, start_epoch_num = \
util.resume_train(args, args.output_folder, model, model_optimizer, classifiers, classifiers_optimizers)
model = model.to(args.device)
epoch_num = start_epoch_num - 1
logging.info(f"Resuming from epoch {start_epoch_num} with best R@1 {best_val_recall1:.1f} from checkpoint {args.resume_train}")
else:
best_val_recall1 = start_epoch_num = 0
if args.use_ikt:
recalls, recalls_str = tests.test(args, val_ds, model, is_training=True)
logging.info(f"{val_ds}: {recalls_str}")
is_best = recalls[0] > best_val_recall1
best_val_recall1 = max(recalls[0], best_val_recall1)
#### Train / evaluation loop
logging.info("Start training ...")
logging.info(f"There are {len(groups[0])} classes for the first group, " +
f"each epoch has {args.iterations_per_epoch} iterations " +
f"with batch_size {args.batch_size}, therefore the model sees each class (on average) " +
f"{args.iterations_per_epoch * args.batch_size / len(groups[0]):.1f} times per epoch")
if args.augmentation_device == "cuda":
gpu_augmentation = T.Compose([
augmentations.DeviceAgnosticColorJitter(brightness=args.brightness,
contrast=args.contrast,
saturation=args.saturation,
hue=args.hue),
augmentations.DeviceAgnosticRandomResizedCrop([args.image_size, args.image_size],
scale=[1-args.random_resized_crop, 1]),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
if args.use_amp16:
scaler = torch.cuda.amp.GradScaler()
for epoch_num in range(start_epoch_num, args.epochs_num):
#### Train
epoch_start_time = datetime.now()
# Select classifier and dataloader according to epoch
current_group_num = epoch_num % args.groups_num
classifiers[current_group_num] = classifiers[current_group_num].to(args.device)
util.move_to_device(classifiers_optimizers[current_group_num], args.device)
dataloader = commons.InfiniteDataLoader(groups[current_group_num], num_workers=args.num_workers,
batch_size=args.batch_size, shuffle=True,
pin_memory=(args.device == "cuda"), drop_last=True)
dataloader_iterator = iter(dataloader)
model = model.train()
epoch_losses = np.zeros((0, 1), dtype=np.float32)
for iteration in tqdm(range(args.iterations_per_epoch), ncols=100):
images, targets, _, inherited_descriptors = next(dataloader_iterator)
images, targets, inherited_descriptors = images.to(args.device), targets.to(args.device), inherited_descriptors.to(args.device)
if args.augmentation_device == "cuda":
images = gpu_augmentation(images)
model_optimizer.zero_grad()
classifiers_optimizers[current_group_num].zero_grad()
if not args.use_amp16:
descriptors = model(images)
output = classifiers[current_group_num](descriptors, targets)
loss = criterion(output, targets)
if args.use_ikt:
inherited_output = classifiers[current_group_num](inherited_descriptors, targets)
loss_ikt = criterion_ikt(output, inherited_output) * args.lambda_ikt
loss = loss + loss_ikt
loss.backward()
epoch_losses = np.append(epoch_losses, loss.item())
del loss, output, images, inherited_descriptors
model_optimizer.step()
classifiers_optimizers[current_group_num].step()
else: # Use AMP 16
with torch.cuda.amp.autocast():
descriptors = model(images)
output = classifiers[current_group_num](descriptors, targets)
loss = criterion(output, targets)
scaler.scale(loss).backward()
epoch_losses = np.append(epoch_losses, loss.item())
del loss, output, images
scaler.step(model_optimizer)
scaler.step(classifiers_optimizers[current_group_num])
scaler.update()
classifiers[current_group_num] = classifiers[current_group_num].cpu()
util.move_to_device(classifiers_optimizers[current_group_num], "cpu")
logging.debug(f"Epoch {epoch_num:02d} in {str(datetime.now() - epoch_start_time)[:-7]}, "
f"loss = {epoch_losses.mean():.4f}")
#### Evaluation
recalls, recalls_str = tests.test(args, val_ds, model, is_training=True)
logging.info(f"Epoch {epoch_num:02d} in {str(datetime.now() - epoch_start_time)[:-7]}, {val_ds}: {recalls_str[:20]}")
is_best = recalls[0] > best_val_recall1
best_val_recall1 = max(recalls[0], best_val_recall1)
# Save checkpoint, which contains all training parameters
util.save_checkpoint({
"epoch_num": epoch_num + 1,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": model_optimizer.state_dict(),
"classifiers_state_dict": [c.state_dict() for c in classifiers],
"optimizers_state_dict": [c.state_dict() for c in classifiers_optimizers],
"best_val_recall1": best_val_recall1
}, is_best, args.output_folder)
logging.info(f"Trained for {epoch_num+1:02d} epochs, in total in {str(datetime.now() - start_time)[:-7]}")
logging.info("Experiment finished (without any errors)")