-
-
Notifications
You must be signed in to change notification settings - Fork 861
/
rwkv_v6_demo.py
694 lines (533 loc) · 25.7 KB
/
rwkv_v6_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import torch, types, os, gc, math
import numpy as np
import torch.nn as nn
from torch.nn import functional as F
'''
This will load RWKV-6 1.6B (L24-D2048) and inference in GPT-mode (slower than RNN-mode for autoregressive generation)
Code output:
Input:
[6699, 304, 25740, 109, 39990, 4600, 4596, 22590, 30449, 4706]
Output:
tensor([[[ -6.8125, -12.8750, -10.7500, ..., -14.1250, -14.1250, -14.1250],
[ -4.0625, -11.0625, -8.3750, ..., -16.5000, -16.5000, -16.5000],
[-15.9375, -22.2500, -20.8750, ..., -31.7500, -31.7500, -31.7500],
...,
[ -6.5000, -16.8750, -14.8125, ..., -20.7500, -20.7500, -20.7500],
[ -6.1562, -15.3125, -10.6875, ..., -29.2500, -29.2500, -29.2500],
[-11.1250, -21.5000, -19.0000, ..., -26.2500, -26.2500, -26.2500]]],
device='cuda:0', dtype=torch.bfloat16)
The Eiffel tower is in the city of
Paris [probability 94.13%]
France [probability 0.63%]
the [probability 0.61%]
pari [probability 0.46%]
Se [probability 0.15%]
[probability 0.14%]
Par [probability 0.13%]
Tro [probability 0.13%]
Tours [probability 0.12%]
Mont [probability 0.11%]
########################################################################################################
How RWKV-6 works (paper: https://arxiv.org/abs/2404.05892)
RWKV-6 GPT mode (good for training & prefilling): https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v5/rwkv_v6_demo.py
RWKV-6 RNN mode (good for autoregressive generation): https://github.com/BlinkDL/ChatRWKV/blob/main/RWKV_v6_demo.py
###############################################################################
The RWKV model:
def forward(self, idx):
x = self.emb(idx) ######## embedding
for block in self.blocks:
x = block(x)
x = self.ln_out(x) ######## layernorm for output
x = self.head(x) ######## output projection
return x
The RWKV block:
def forward(self, x):
if self.layer_id == 0:
x = self.ln0(x) ######## extra layernorm after embedding
x = x + self.att(self.ln1(x)) ######## "att" = RWKV_Tmix_x060
x = x + self.ffn(self.ln2(x)) ######## "ffn" = RWKV_CMix_x060
return x
So it's like:
x => emb => block.0.ln0 => +att(block.0.ln1(x)) => +ffn(block.0.ln2(x)) => ... => ln_out => head => logits
###############################################################################
THE RWKV_CMix_x060 BLOCK (replace transformer FFN)
def forward(self, x):
xx = self.time_shift(x) - x ######## self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
xk = x + xx * self.time_maa_k
xr = x + xx * self.time_maa_r
k = self.key(xk)
k = torch.relu(k) ** 2
kv = self.value(k)
return torch.sigmoid(self.receptance(xr)) * kv
#### Here xx is like "previous token" (timeshift(x)) minus "this token" (x)
#### We mix x with xx using coefficients time_maa_k & time_maa_r to get xk & xr
so xk & xr are like x, but with "some information of previous token" mixed in them
#### We use reluSq and an extra sigmoid(r) gate
###############################################################################
THE RWKV_TMix_x060 BLOCK (replace transformer MHA)
def jit_func(self, x):
B, T, C = x.size()
xx = self.time_shift(x) - x
xxx = x + xx * self.time_maa_x ######## xxx = mix of x & xx
xxx = torch.tanh(xxx @ self.time_maa_w1).view(B*T, 5, -1).transpose(0, 1)
xxx = torch.bmm(xxx, self.time_maa_w2).view(5, B, T, -1)
mw, mk, mv, mr, mg = xxx.unbind(dim=0) ######## xxx => LoRA => mw, mk, mv, mr, mg
######## time_maa_* are static mixing coefficients, and m* are dynamic mixing coefficients
xw = x + xx * (self.time_maa_w + mw)
xk = x + xx * (self.time_maa_k + mk)
xv = x + xx * (self.time_maa_v + mv)
xr = x + xx * (self.time_maa_r + mr)
xg = x + xx * (self.time_maa_g + mg)
r = self.receptance(xr) ######## r of RWKV5/6 is similar to transformer q
k = self.key(xk) ######## k is similar to transformer k
v = self.value(xv) ######## v is similar to transformer v
g = F.silu(self.gate(xg)) ######## g is an extra gate
ww = torch.tanh(xw @ self.time_decay_w1) @ self.time_decay_w2 ######### xw => LoRA => ww, which is the dynamic part of w
w = self.time_decay + ww ######### w is the "decay coefficient" for each channel. time_decay is the static part of w
return r, k, v, g, w
def jit_func_2(self, x, g):
B, T, C = x.size()
x = x.view(B * T, C)
x = self.ln_x(x).view(B, T, C) ######### ln_x is GroupNorm = individual LayerNorm for each head
x = self.output(x * g)
return x
def forward(self, x):
B, T, C = x.size()
H = self.n_head
r, k, v, g, w = self.jit_func(x)
x = RUN_CUDA_RWKV6(B, T, C, H, r, k, v, w, u=self.time_faaaa) # The RWKV operator
return self.jit_func_2(x, g)
Explaining the RWKV operator:
#### C is splitted into multiple heads, with head_sz = 64
#### For each head, compute the outer product of k & v, which will be a 64x64 matrix. Let's call it A
#### A will accumulate to build the state S. And S will decay over time (decay speed controlled by w).
S_t = u A_t + A_{t-1} + w_{t-1} A_{t-2} + w_{t-1} w_{t-2} A_{t-3} + ...
#### Multiply r (vector) with S (matrix) to get output
###############################################################################
RWKV can be rewritten as an RNN. Check the code in https://github.com/BlinkDL/ChatRWKV/blob/main/RWKV_v6_demo.py
def time_mixing(self, x, state, i:int, x_maa, w_maa, k_maa, v_maa, r_maa, g_maa, tm_w1, tm_w2, td_w1, td_w2, time_first, time_decay, kw, vw, rw, gw, ow, ln_w, ln_b):
H = self.n_head
S = self.head_size
i1 = (2+S)*i+1
sx = state[i1] - x
state[i1] = x
xxx = x + sx * x_maa
xxx = torch.tanh(xxx @ tm_w1).view(5, 1, -1)
xxx = torch.bmm(xxx, tm_w2).view(5, -1)
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
xw = x + sx * (w_maa + mw)
xk = x + sx * (k_maa + mk)
xv = x + sx * (v_maa + mv)
xr = x + sx * (r_maa + mr)
xg = x + sx * (g_maa + mg)
w = (time_decay + (torch.tanh(xw @ td_w1) @ td_w2).float()).view(H, S, 1)
w = torch.exp(-torch.exp(w.float())) ######### we are actually using exp(-exo(w)) as decay coefficient, which is always within (0,1)
r = (rw @ xr).view(H, 1, S)
k = (kw @ xk).view(H, S, 1)
v = (vw @ xv).view(H, 1, S)
g = F.silu(gw @ xg)
s = state[(2+S)*i+2:(2+S)*(i+1), :].reshape(H, S, S) ######### Because state[] contains states of all blocks, this is fetching the correct state for this block. Note S=64 is head_size
x = torch.zeros(H, S)
a = k @ v ######### outer product of k and v (check the shape of k and v)
x = r @ (time_first * a + s) ######### "time_first" = u
s = a + w * s
state[(2+S)*i+2:(2+S)*(i+1), :] = s.reshape(S, -1) ######### Update state
x = x.flatten()
x = F.group_norm(x.unsqueeze(0), num_groups=H, weight=ln_w, bias=ln_b, eps = 64e-5).squeeze(0) * g ######### note we are using eps=64e-5 for GroupNorm
return ow @ x
Let's verify:
s = 0
a = k0@v0
x0 = r0 @ (u a + s) = r0 @ (u k0@v0 + 0)
s = k0@v0
a = k1@v1
x1 = r1 @ (u a + s) = r1 @ (u k1@v1 + k0@v0)
s = k1@v1 + w1 k0@v0
a = k2@v2
x2 = r2 @ (u a + s) = r2 @ (u k2@v2 + k1@v1 + w1 k0@v0)
...
and this agrees with our previous formula:
x_t = r_t @ S_t = r_t @ (u A_t + A_{t-1} + w_{t-1} A_{t-2} + w_{t-1} w_{t-2} A_{t-3} + ...)
###############################################################################
#
# In RWKV v6.0b, we find it's possible to replace GroupNorm by LayerNorm, and remove gate, to save some params and make it faster.
#
# Check https://github.com/BlinkDL/LinearAttentionArena
#
# Finally, if you are training RWKV from scratch, it's VERY IMPORTANT to try my initialization for all parameters.
#
# The self.time_xxx initializations can be seen here.
#
# And we have more initializations in init_params() here, which is actually:
#
# emb.weight => nn.init.uniform_(a=-1e-4, b=1e-4)
# head.weight => nn.init.orthogonal_(gain=0.5*sqrt(n_vocab / n_embd))
#
# att.receptance.weight => nn.init.orthogonal_(gain=1)
# att.key.weight => nn.init.orthogonal_(gain=0.1)
# att.value.weight => nn.init.orthogonal_(gain=1)
# att.gate.weight => nn.init.orthogonal_(gain=0.1)
# att.output.weight => zero
#
# att.ln_x.weight (groupnorm) => ((1 + layer_id) / total_layers) ** 0.7
#
# ffn.key.weight => nn.init.orthogonal_(gain=1)
# ffn.value.weight => zero
# ffn.receptance.weight => zero
#
# !!! If you are using positional embedding, maybe it's better to remove block.0.ln0, and use default initialization for emb.weight instead of my uniform_(a=-1e-4, b=1e-4) !!!
#
########################################################################################################
'''
args = types.SimpleNamespace()
args.n_layer = 24
args.n_embd = 2048
args.vocab_size = 65536
args.ctx_len = 4096
########################################################################################################
# CUDA Kernel
########################################################################################################
args.head_size_a = 64 # don't change
args.head_size_divisor = 8 # don't change
from torch.utils.cpp_extension import load
wkv6_cuda = load(name="wkv6", sources=["cuda/wkv6_op.cpp", f"cuda/wkv6_cuda.cu"],
verbose=True, extra_cuda_cflags=["-res-usage", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-D_N_={args.head_size_a}", f"-D_T_={args.ctx_len}"])
class WKV_6(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, H, r, k, v, w, u): # forward: r, k, v, w, u => y
with torch.no_grad():
assert r.dtype == torch.bfloat16
assert k.dtype == torch.bfloat16
assert v.dtype == torch.bfloat16
assert w.dtype == torch.bfloat16
assert u.dtype == torch.bfloat16
assert args.head_size_a == C // H
ctx.B = B
ctx.T = T
ctx.C = C
ctx.H = H
assert r.is_contiguous()
assert k.is_contiguous()
assert v.is_contiguous()
assert w.is_contiguous()
assert u.is_contiguous()
ctx.save_for_backward(r, k, v, w, u)
y = torch.empty((B, T, C), device=r.device, dtype=torch.bfloat16, memory_format=torch.contiguous_format)#.uniform_(-100, 100)
wkv6_cuda.forward(B, T, C, H, r, k, v, w, u, y)
return y
@staticmethod
def backward(ctx, gy): # backward: gy => gr, gk, gv, gw, gu
with torch.no_grad():
assert gy.dtype == torch.bfloat16
B = ctx.B
T = ctx.T
C = ctx.C
H = ctx.H
assert gy.is_contiguous()
r, k, v, w, u = ctx.saved_tensors
gr = torch.empty((B, T, C), device=gy.device, requires_grad=False, dtype=torch.bfloat16, memory_format=torch.contiguous_format)#.uniform_(-100, 100)
gk = torch.empty((B, T, C), device=gy.device, requires_grad=False, dtype=torch.bfloat16, memory_format=torch.contiguous_format)#.uniform_(-100, 100)
gv = torch.empty((B, T, C), device=gy.device, requires_grad=False, dtype=torch.bfloat16, memory_format=torch.contiguous_format)#.uniform_(-100, 100)
gw = torch.empty((B, T, C), device=gy.device, requires_grad=False, dtype=torch.bfloat16, memory_format=torch.contiguous_format)#.uniform_(-100, 100)
gu = torch.empty((B, C), device=gy.device, requires_grad=False, dtype=torch.bfloat16, memory_format=torch.contiguous_format)#.uniform_(-100, 100)
wkv6_cuda.backward(B, T, C, H, r, k, v, w, u, gy, gr, gk, gv, gw, gu)
gu = torch.sum(gu, 0).view(H, C//H)
return (None, None, None, None, gr, gk, gv, gw, gu) # return gradients for r,k,v,w,u
def RUN_CUDA_RWKV6(B, T, C, H, r, k, v, w, u):
return WKV_6.apply(B, T, C, H, r, k, v, w, u)
########################################################################################################
# RWKV TimeMix
########################################################################################################
class RWKV_Tmix_x060(nn.Module):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.head_size = args.head_size_a
self.n_head = args.dim_att // self.head_size
assert args.dim_att % self.n_head == 0
with torch.no_grad():
ratio_0_to_1 = layer_id / (args.n_layer - 1) # 0 to 1
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
ddd = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
ddd[0, 0, i] = i / args.n_embd
# fancy time_mix
self.time_maa_x = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
self.time_maa_w = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
self.time_maa_k = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
self.time_maa_v = nn.Parameter(1.0 - (torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1))
self.time_maa_r = nn.Parameter(1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0))
self.time_maa_g = nn.Parameter(1.0 - torch.pow(ddd, 0.5 * ratio_1_to_almost0))
D_MIX_LORA = 32 # generate TIME_MIX for w,k,v,r,g
self.time_maa_w1 = nn.Parameter(torch.zeros(args.n_embd, D_MIX_LORA*5))
self.time_maa_w2 = nn.Parameter(torch.zeros(5, D_MIX_LORA, args.n_embd).uniform_(-0.01, 0.01))
# fancy time_decay
decay_speed = torch.ones(args.dim_att)
for n in range(args.dim_att):
decay_speed[n] = -6 + 5 * (n / (args.dim_att - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
self.time_decay = nn.Parameter(decay_speed.reshape(1,1,args.dim_att))
D_DECAY_LORA = 64
self.time_decay_w1 = nn.Parameter(torch.zeros(args.n_embd, D_DECAY_LORA))
self.time_decay_w2 = nn.Parameter(torch.zeros(D_DECAY_LORA, args.dim_att).uniform_(-0.01, 0.01))
tmp = torch.zeros(args.dim_att)
for n in range(args.dim_att):
zigzag = ((n + 1) % 3 - 1) * 0.1
tmp[n] = ratio_0_to_1 * (1 - (n / (args.dim_att - 1))) + zigzag
self.time_faaaa = nn.Parameter(tmp.reshape(self.n_head, self.head_size))
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.receptance = nn.Linear(args.n_embd, args.dim_att, bias=False)
self.key = nn.Linear(args.n_embd, args.dim_att, bias=False)
self.value = nn.Linear(args.n_embd, args.dim_att, bias=False)
self.output = nn.Linear(args.dim_att, args.n_embd, bias=False)
self.gate = nn.Linear(args.n_embd, args.dim_att, bias=False)
self.ln_x = nn.GroupNorm(self.n_head, args.dim_att, eps=(1e-5)*(args.head_size_divisor**2))
def jit_func(self, x):
B, T, C = x.size()
xx = self.time_shift(x) - x
xxx = x + xx * self.time_maa_x
xxx = torch.tanh(xxx @ self.time_maa_w1).view(B*T, 5, -1).transpose(0, 1)
xxx = torch.bmm(xxx, self.time_maa_w2).view(5, B, T, -1)
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
xw = x + xx * (self.time_maa_w + mw)
xk = x + xx * (self.time_maa_k + mk)
xv = x + xx * (self.time_maa_v + mv)
xr = x + xx * (self.time_maa_r + mr)
xg = x + xx * (self.time_maa_g + mg)
r = self.receptance(xr)
k = self.key(xk)
v = self.value(xv)
g = F.silu(self.gate(xg))
ww = torch.tanh(xw @ self.time_decay_w1) @ self.time_decay_w2
w = self.time_decay + ww
return r, k, v, g, w
def jit_func_2(self, x, g):
B, T, C = x.size()
x = x.view(B * T, C)
x = self.ln_x(x).view(B, T, C)
x = self.output(x * g)
return x
def forward(self, x):
B, T, C = x.size()
H = self.n_head
r, k, v, g, w = self.jit_func(x)
x = RUN_CUDA_RWKV6(B, T, C, H, r, k, v, w, u=self.time_faaaa)
return self.jit_func_2(x, g)
########################################################################################################
# RWKV ChannelMix
########################################################################################################
class RWKV_CMix_x060(nn.Module):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad(): # fancy init of time_mix
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
ddd = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
ddd[0, 0, i] = i / args.n_embd
self.time_maa_k = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
self.time_maa_r = nn.Parameter(1.0 - torch.pow(ddd, ratio_1_to_almost0))
self.key = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
self.receptance = nn.Linear(args.n_embd, args.n_embd, bias=False)
self.value = nn.Linear(args.dim_ffn, args.n_embd, bias=False)
def forward(self, x):
xx = self.time_shift(x) - x
xk = x + xx * self.time_maa_k
xr = x + xx * self.time_maa_r
k = self.key(xk)
k = torch.relu(k) ** 2
kv = self.value(k)
return torch.sigmoid(self.receptance(xr)) * kv
########################################################################################################
# RWKV Block
########################################################################################################
class Block(nn.Module):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.ln1 = nn.LayerNorm(args.n_embd)
self.ln2 = nn.LayerNorm(args.n_embd)
if self.layer_id == 0:
self.ln0 = nn.LayerNorm(args.n_embd)
self.att = RWKV_Tmix_x060(args, layer_id)
self.ffn = RWKV_CMix_x060(args, layer_id)
def forward(self, x):
if self.layer_id == 0:
x = self.ln0(x)
x = x + self.att(self.ln1(x))
x = x + self.ffn(self.ln2(x))
return x
########################################################################################################
# RWKV Model
########################################################################################################
class RWKV(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
args.dim_att = args.n_embd
args.dim_ffn = int((args.n_embd * 3.5) // 32 * 32)
assert args.n_embd % 32 == 0
assert args.dim_att % 32 == 0
assert args.dim_ffn % 32 == 0
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
self.blocks = nn.ModuleList([Block(args, i) for i in range(args.n_layer)])
self.ln_out = nn.LayerNorm(args.n_embd)
self.head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
# self.init_params() # !!! When you train RWKV from scratch, try my initialization for best performance !!!
def forward(self, idx):
x = self.emb(idx)
for block in self.blocks:
x = block(x)
x = self.ln_out(x)
x = self.head(x)
return x
def init_params(self):
m = self.state_dict()
n_params = 0
for n in self.state_dict():
p = m[n]
shape = p.shape
s0 = str(shape[0]) if len(shape) > 0 else ""
s1 = str(shape[1]) if len(shape) > 1 else ""
s2 = str(shape[2]) if len(shape) > 2 else ""
print(f"{s0.ljust(5)} {s1.ljust(5)} {s2.ljust(5)} {n}", end="")
scale = 1.0
if "ln_" in n or ".ln" in n or "time_" in n or n.endswith('_w') or n.endswith('_w1') or n.endswith('_w2') or n.endswith('_bias'):
if 'ln_x.weight' in n:
layer_scale = (1+int(n.split('.')[1])) / self.args.n_layer
m[n] = (p * 0.0) + (layer_scale ** 0.7)
else:
m[n] = p
print()
elif n == "emb.weight":
m[n] = p
scale = -1e-4
nn.init.uniform_(m[n], a=scale, b=-scale) # !!! If you are using positional embedding, maybe it's better to remove block.0.ln0, and use default initialization for emb.weight instead of my uniform_(a=-1e-4, b=1e-4) !!!
print(f" [scale {scale}]")
elif n == "head.weight":
m[n] = p
if self.args.vocab_size > self.args.n_embd:
scale = 0.5 * math.sqrt(self.args.vocab_size / self.args.n_embd)
else:
scale = 0.5
nn.init.orthogonal_(m[n], gain=scale)
print(f" [scale {scale}]")
else:
assert n.endswith('.weight') # should always be true
for kk in [".att.output.", ".ffn.value.", ".ffn.receptance."]:
if kk in n:
scale = 0
for kk in [".att.key."]:
if kk in n:
scale = 0.1
for kk in [".att.gate."]:
if kk in n:
scale = 0.1
print(f" [scale {scale}]")
m[n] = torch.empty((shape[0], shape[1]), device=p.device)
if scale == 0:
nn.init.zeros_(m[n])
else:
nn.init.orthogonal_(m[n], gain=scale)
n_params += m[n].numel()
print('model params', n_params)
gc.collect()
torch.cuda.empty_cache()
########################################################################################################
# RWKV Tokenizer (slow version)
########################################################################################################
class RWKV_TOKENIZER():
table: list[list[list[bytes]]]
good: list[set[int]]
wlen: list[int]
def __init__(self, file_name):
self.idx2token = {}
sorted = [] # must be already sorted
lines = open(file_name, "r", encoding="utf-8").readlines()
for l in lines:
idx = int(l[:l.index(' ')])
x = eval(l[l.index(' '):l.rindex(' ')])
x = x.encode("utf-8") if isinstance(x, str) else x
assert isinstance(x, bytes)
assert len(x) == int(l[l.rindex(' '):])
sorted += [x]
self.idx2token[idx] = x
self.token2idx = {}
for k, v in self.idx2token.items():
self.token2idx[v] = int(k)
# precompute some tables for fast matching
self.table = [[[] for j in range(256)] for i in range(256)]
self.good = [set() for i in range(256)]
self.wlen = [0 for i in range(256)]
for i in reversed(range(len(sorted))): # reverse order - match longer tokens first
s = sorted[i]
if len(s) >= 2:
s0 = int(s[0])
s1 = int(s[1])
self.table[s0][s1] += [s]
self.wlen[s0] = max(self.wlen[s0], len(s))
self.good[s0].add(s1)
def encodeBytes(self, src: bytes) -> list[int]:
src_len: int = len(src)
tokens: list[int] = []
i: int = 0
while i < src_len:
s: bytes = src[i : i + 1]
if i < src_len - 1:
s1: int = int(src[i + 1])
s0: int = int(src[i])
if s1 in self.good[s0]:
sss: bytes = src[i : i + self.wlen[s0]]
try:
s = next(filter(sss.startswith, self.table[s0][s1]))
except:
pass
tokens.append(self.token2idx[s])
i += len(s)
return tokens
def decodeBytes(self, tokens):
return b''.join(map(lambda i: self.idx2token[i], tokens))
def encode(self, src: str):
return self.encodeBytes(src.encode("utf-8"))
def decode(self, tokens):
return self.decodeBytes(tokens).decode('utf-8')
def printTokens(self, tokens):
for i in tokens:
s = self.idx2token[i]
try:
s = s.decode('utf-8')
except:
pass
print(f'{repr(s)}{i}', end=' ')
# print(repr(s), i)
print()
tokenizer = RWKV_TOKENIZER("rwkv_vocab_v20230424.txt")
########################################################################################################
# RWKV Inference
########################################################################################################
# use https://huggingface.co/BlinkDL/rwkv-6-world/blob/main/RWKV-x060-World-1B6-v2.1-20240328-ctx4096.pth
model_params = torch.load("/mnt/e/RWKV-Runner/models/rwkv-final-v6-2.1-1b6.pth", map_location="cpu")
with torch.no_grad():
model = RWKV(args).bfloat16().cuda()
model.load_state_dict(model_params)
prompt = "The Eiffel tower is in the city of"
input = tokenizer.encode(prompt)
print(f'\nInput:\n{input}')
out = model.forward(torch.tensor(input).reshape(1,-1).cuda())
print(f'\nOutput:\n{out}')
# let's check the logits for the last token => prediction for the next token
out = out[0,-1] # out.shape = [batch_size(B), seq_len(T), n_emb(C)], so out[0,-1] is the logits for the last token
probs = F.softmax(out.float(), dim=-1) # compute softmax in float (more accurate)
print(f'\n{prompt}')
_, indices = torch.topk(probs, 10) # print top-10 possibilities
for i in range(len(indices)):
token_id = indices[i].item()
token = tokenizer.decode([token_id])
token_prob = probs[token_id].item()
print(token, f'[probability {token_prob:.2%}]')