diff --git a/cif_mag.dic b/cif_mag.dic index 8fe8697..7c8464c 100644 --- a/cif_mag.dic +++ b/cif_mag.dic @@ -39,6 +39,198 @@ save_MAGNETIC save_ +save_ATOM_SITE_FOURIER_WAVE_VECTOR + + _definition.id ATOM_SITE_FOURIER_WAVE_VECTOR + _definition.scope Category + _definition.class Loop + _definition.update 2016-05-24 + _description.text +; + Data items in the ATOM_SITE_FOURIER_WAVE_VECTOR category record + details about the wave vectors of the Fourier terms used in the + structural model. This category is fully defined in the modulated + structures dictionary. +; + _name.category_id MAGNETIC + _name.object_id ATOM_SITE_FOURIER_WAVE_VECTOR + _category_key.name '_atom_site_Fourier_wave_vector.seq_id' + + loop_ + _description_example.case + _description_example.detail +; + loop_ + _cell_wave_vector_seq_id + _cell_wave_vector_x + _cell_wave_vector_y + _cell_wave_vector_z + 1 0.30000 0.30000 0.00000 + 2 -0.60000 0.30000 0.00000 + loop_ + _atom_site_Fourier_wave_vector_seq_id + _atom_site_Fourier_wave_vector_x + _atom_site_Fourier_wave_vector_y + _atom_site_Fourier_wave_vector_z + _atom_site_Fourier_wave_vector_q_coeff + 1 -0.30000 0.60000 0.00000 [1 1] + 2 -0.60000 0.30000 0.00000 [0 1] + 3 -0.30000 -0.30000 0.00000 [-1 0] +; +; + Example 1 - Hypothetical example showing the modulation wave vector + components expressed using the array data item + _atom_site_Fourier_wave_vector_q_coeff. +; +; + loop_ + _cell_wave_vector_seq_id + _cell_wave_vector_x + _cell_wave_vector_y + _cell_wave_vector_z + 1 0.30000 0.30000 0.00000 + 2 -0.60000 0.30000 0.00000 + loop_ + _atom_site_Fourier_wave_vector_seq_id + _atom_site_Fourier_wave_vector_x + _atom_site_Fourier_wave_vector_y + _atom_site_Fourier_wave_vector_z + _atom_site_Fourier_wave_vector_q1_coeff + _atom_site_Fourier_wave_vector_q2_coeff + 1 -0.30000 0.60000 0.00000 1 1 + 2 -0.60000 0.30000 0.00000 0 1 + 3 -0.30000 -0.30000 0.00000 -1 0 +; +; + Example 1 - As example 1, but using separate data items for each + individual component of the modulation wave vector. +; + +save_ + +save_atom_site_fourier_wave_vector.q1_coeff + + _definition.id '_atom_site_Fourier_wave_vector.q1_coeff' + _alias.definition_id '_atom_site_Fourier_wave_vector_q1_coeff' + _definition.update 2016-06-21 + _description.text +; + For a given incommensurate modulation that contributes to the + structure, the wave vector of the modulation can be expressed as an + integer linear combination of the d independent wave vectors that + define the (3+d)-dimensional superspace. The q1_coeff tag holds the + integer coefficient of the contribution of the first independent wave + vector, the q2_coeff tag holds the integer coefficient of the + contribution of the second independent wave vector, and so on. At the + time of this writing, no examples with more than three independent + wave vectors are known, though there is no theoretical limit to the + number that could occur. These tags are not explicitly magnetic; they + are equally applicable to any incommensurate modulation. +; + _name.category_id atom_site_Fourier_wave_vector + _name.object_id q1_coeff + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Integer + _method.purpose Evaluation + _method.expression +; + with a as atom_site_Fourier_wave_vector + a.q1_coeff = a.q_coeff[0] +; + +save_ + +save_atom_site_fourier_wave_vector.q2_coeff + + _definition.id '_atom_site_Fourier_wave_vector.q2_coeff' + _alias.definition_id '_atom_site_Fourier_wave_vector_q2_coeff' + _definition.update 2016-06-21 + _description.text +; + For a given incommensurate modulation that contributes to the + structure, the wave vector of the modulation can be expressed as an + integer linear combination of the d independent wave vectors that + define the (3+d)-dimensional superspace. The q1_coeff tag holds the + integer coefficient of the contribution of the first independent wave + vector, the q2_coeff tag holds the integer coefficient of the + contribution of the second independent wave vector, and so on. At the + time of this writing, no examples with more than three independent + wave vectors are known, though there is no theoretical limit to the + number that could occur. These tags are not explicitly magnetic; they + are equally applicable to any incommensurate modulation. +; + _name.category_id atom_site_Fourier_wave_vector + _name.object_id q2_coeff + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Integer + _method.purpose Evaluation + _method.expression +; + with a as atom_site_Fourier_wave_vector + a.q2_coeff = a.q_coeff[1] +; + +save_ + +save_atom_site_fourier_wave_vector.q3_coeff + + _definition.id '_atom_site_Fourier_wave_vector.q3_coeff' + _alias.definition_id '_atom_site_Fourier_wave_vector_q3_coeff' + _definition.update 2016-06-21 + _description.text +; + For a given incommensurate modulation that contributes to the + structure, the wave vector of the modulation can be expressed as an + integer linear combination of the d independent wave vectors that + define the (3+d)-dimensional superspace. The q1_coeff tag holds the + integer coefficient of the contribution of the first independent wave + vector, the q2_coeff tag holds the integer coefficient of the + contribution of the second independent wave vector, and so on. At the + time of this writing, no examples with more than three independent + wave vectors are known, though there is no theoretical limit to the + number that could occur. These tags are not explicitly magnetic; they + are equally applicable to any incommensurate modulation. +; + _name.category_id atom_site_Fourier_wave_vector + _name.object_id q3_coeff + _type.purpose Describe + _type.source Assigned + _type.container Single + _type.contents Integer + +save_ + +save_atom_site_fourier_wave_vector.q_coeff + + _definition.id '_atom_site_Fourier_wave_vector.q_coeff' + _alias.definition_id '_atom_site_Fourier_wave_vector_q_coeff' + _definition.update 2016-06-21 + _description.text +; + For a given incommensurate modulation that contributes to the + structure, the wave vector of the modulation can be expressed as an + integer linear combination of the d independent wave vectors that + define the (3+d)-dimensional superspace. This tag holds each of + the integer coefficients as an array. At the + time of this writing, no examples with more than three independent + wave vectors are known, though there is no theoretical limit to the + number that could occur. These tags are not explicitly magnetic; they + are equally applicable to any incommensurate modulation. +; + _name.category_id atom_site_Fourier_wave_vector + _name.object_id q_coeff + _type.purpose Describe + _type.source Assigned + _type.container Array + _type.dimension '[]' + _type.contents Integer + +save_ + save_ATOM_SITE_MOMENT _definition.id ATOM_SITE_MOMENT @@ -2214,198 +2406,6 @@ save_atom_type_scat.neutron_magnetic_source save_ -save_ATOM_SITE_FOURIER_WAVE_VECTOR - - _definition.id ATOM_SITE_FOURIER_WAVE_VECTOR - _definition.scope Category - _definition.class Loop - _definition.update 2016-05-24 - _description.text -; - Data items in the ATOM_SITE_FOURIER_WAVE_VECTOR category record - details about the wave vectors of the Fourier terms used in the - structural model. This category is fully defined in the modulated - structures dictionary. -; - _name.category_id MAGNETIC - _name.object_id ATOM_SITE_FOURIER_WAVE_VECTOR - _category_key.name '_atom_site_Fourier_wave_vector.seq_id' - - loop_ - _description_example.case - _description_example.detail -; - loop_ - _cell_wave_vector_seq_id - _cell_wave_vector_x - _cell_wave_vector_y - _cell_wave_vector_z - 1 0.30000 0.30000 0.00000 - 2 -0.60000 0.30000 0.00000 - loop_ - _atom_site_Fourier_wave_vector_seq_id - _atom_site_Fourier_wave_vector_x - _atom_site_Fourier_wave_vector_y - _atom_site_Fourier_wave_vector_z - _atom_site_Fourier_wave_vector_q_coeff - 1 -0.30000 0.60000 0.00000 [1 1] - 2 -0.60000 0.30000 0.00000 [0 1] - 3 -0.30000 -0.30000 0.00000 [-1 0] -; -; - Example 1 - Hypothetical example showing the modulation wave vector - components expressed using the array data item - _atom_site_Fourier_wave_vector_q_coeff. -; -; - loop_ - _cell_wave_vector_seq_id - _cell_wave_vector_x - _cell_wave_vector_y - _cell_wave_vector_z - 1 0.30000 0.30000 0.00000 - 2 -0.60000 0.30000 0.00000 - loop_ - _atom_site_Fourier_wave_vector_seq_id - _atom_site_Fourier_wave_vector_x - _atom_site_Fourier_wave_vector_y - _atom_site_Fourier_wave_vector_z - _atom_site_Fourier_wave_vector_q1_coeff - _atom_site_Fourier_wave_vector_q2_coeff - 1 -0.30000 0.60000 0.00000 1 1 - 2 -0.60000 0.30000 0.00000 0 1 - 3 -0.30000 -0.30000 0.00000 -1 0 -; -; - Example 1 - As example 1, but using separate data items for each - individual component of the modulation wave vector. -; - -save_ - -save_atom_site_fourier_wave_vector.q1_coeff - - _definition.id '_atom_site_Fourier_wave_vector.q1_coeff' - _alias.definition_id '_atom_site_Fourier_wave_vector_q1_coeff' - _definition.update 2016-06-21 - _description.text -; - For a given incommensurate modulation that contributes to the - structure, the wave vector of the modulation can be expressed as an - integer linear combination of the d independent wave vectors that - define the (3+d)-dimensional superspace. The q1_coeff tag holds the - integer coefficient of the contribution of the first independent wave - vector, the q2_coeff tag holds the integer coefficient of the - contribution of the second independent wave vector, and so on. At the - time of this writing, no examples with more than three independent - wave vectors are known, though there is no theoretical limit to the - number that could occur. These tags are not explicitly magnetic; they - are equally applicable to any incommensurate modulation. -; - _name.category_id atom_site_Fourier_wave_vector - _name.object_id q1_coeff - _type.purpose Describe - _type.source Assigned - _type.container Single - _type.contents Integer - _method.purpose Evaluation - _method.expression -; - with a as atom_site_Fourier_wave_vector - a.q1_coeff = a.q_coeff[0] -; - -save_ - -save_atom_site_fourier_wave_vector.q2_coeff - - _definition.id '_atom_site_Fourier_wave_vector.q2_coeff' - _alias.definition_id '_atom_site_Fourier_wave_vector_q2_coeff' - _definition.update 2016-06-21 - _description.text -; - For a given incommensurate modulation that contributes to the - structure, the wave vector of the modulation can be expressed as an - integer linear combination of the d independent wave vectors that - define the (3+d)-dimensional superspace. The q1_coeff tag holds the - integer coefficient of the contribution of the first independent wave - vector, the q2_coeff tag holds the integer coefficient of the - contribution of the second independent wave vector, and so on. At the - time of this writing, no examples with more than three independent - wave vectors are known, though there is no theoretical limit to the - number that could occur. These tags are not explicitly magnetic; they - are equally applicable to any incommensurate modulation. -; - _name.category_id atom_site_Fourier_wave_vector - _name.object_id q2_coeff - _type.purpose Describe - _type.source Assigned - _type.container Single - _type.contents Integer - _method.purpose Evaluation - _method.expression -; - with a as atom_site_Fourier_wave_vector - a.q2_coeff = a.q_coeff[1] -; - -save_ - -save_atom_site_fourier_wave_vector.q3_coeff - - _definition.id '_atom_site_Fourier_wave_vector.q3_coeff' - _alias.definition_id '_atom_site_Fourier_wave_vector_q3_coeff' - _definition.update 2016-06-21 - _description.text -; - For a given incommensurate modulation that contributes to the - structure, the wave vector of the modulation can be expressed as an - integer linear combination of the d independent wave vectors that - define the (3+d)-dimensional superspace. The q1_coeff tag holds the - integer coefficient of the contribution of the first independent wave - vector, the q2_coeff tag holds the integer coefficient of the - contribution of the second independent wave vector, and so on. At the - time of this writing, no examples with more than three independent - wave vectors are known, though there is no theoretical limit to the - number that could occur. These tags are not explicitly magnetic; they - are equally applicable to any incommensurate modulation. -; - _name.category_id atom_site_Fourier_wave_vector - _name.object_id q3_coeff - _type.purpose Describe - _type.source Assigned - _type.container Single - _type.contents Integer - -save_ - -save_atom_site_fourier_wave_vector.q_coeff - - _definition.id '_atom_site_Fourier_wave_vector.q_coeff' - _alias.definition_id '_atom_site_Fourier_wave_vector_q_coeff' - _definition.update 2016-06-21 - _description.text -; - For a given incommensurate modulation that contributes to the - structure, the wave vector of the modulation can be expressed as an - integer linear combination of the d independent wave vectors that - define the (3+d)-dimensional superspace. This tag holds each of - the integer coefficients as an array. At the - time of this writing, no examples with more than three independent - wave vectors are known, though there is no theoretical limit to the - number that could occur. These tags are not explicitly magnetic; they - are equally applicable to any incommensurate modulation. -; - _name.category_id atom_site_Fourier_wave_vector - _name.object_id q_coeff - _type.purpose Describe - _type.source Assigned - _type.container Array - _type.dimension '[]' - _type.contents Integer - -save_ - save_PARENT_PROPAGATION_VECTOR _definition.id PARENT_PROPAGATION_VECTOR