-
Notifications
You must be signed in to change notification settings - Fork 119
Falcon Complete Dashboard
Operation ID | Description | ||||
---|---|---|---|---|---|
|
Retrieve aggregate allowlist ticket values based on the matched filter | ||||
|
Retrieve aggregate blocklist ticket values based on the matched filter | ||||
|
Retrieve aggregate detection values based on the matched filter | ||||
|
Retrieve aggregate host/devices count based on the matched filter | ||||
|
Retrieve aggregate escalation ticket values based on the matched filter | ||||
|
Retrieve aggregate incident values based on the matched filter | ||||
|
Retrieve aggregate remediation ticket values based on the matched filter | ||||
|
Retrieve allowlist tickets that match the provided filter criteria with scrolling enabled | ||||
|
Retrieve block listtickets that match the provided filter criteria with scrolling enabled | ||||
|
Retrieve DetectionsIds that match the provided FQL filter, criteria with scrolling enabled | ||||
|
Retrieve device count collection Ids that match the provided FQL filter, criteria with scrolling enabled | ||||
|
Retrieve escalation tickets that match the provided filter criteria with scrolling enabled | ||||
|
Retrieve incidents that match the provided filter criteria with scrolling enabled | ||||
|
Retrieve remediation tickets that match the provided filter criteria with scrolling enabled |
WARNING
client_id
andclient_secret
are input variables that contain your CrowdStrike API credentials. Please note that all examples below do not hard code these values. (All values are ingested as strings.)CrowdStrike does not recommend hard coding API credentials or customer identifiers within source code.
Retrieve aggregate allowlist ticket values based on the matched filter
aggregate_allow_list
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
body |
|
|
body | list of dictionaries | Full body payload in JSON format. |
date_ranges |
|
|
body | list of dictionaries | Applies to date_range aggregations. Example: [ { "from": "2016-05-28T09:00:31Z", "to": "2016-05-30T09:00:31Z" }, { "from": "2016-06-01T09:00:31Z", "to": "2016-06-10T09:00:31Z" } ] |
field |
|
|
body | string | The field on which to compute the aggregation. |
filter |
|
|
body | string | FQL syntax formatted string to use to filter the results. |
interval |
|
|
body | string | Time interval for date histogram aggregations. Valid values include:
|
min_doc_count |
|
|
body | integer | Only return buckets if values are greater than or equal to the value here. |
missing |
|
|
body | string | Missing is the value to be used when the aggregation field is missing from the object. In other words, the missing parameter defines how documents that are missing a value should be treated. By default they will be ignored, but it is also possible to treat them as if they had a value. |
name |
|
|
body | string | Name of the aggregate query, as chosen by the user. Used to identify the results returned to you. |
q |
|
|
body | string | Full text search across all metadata fields. |
ranges |
|
|
body | list of dictionaries | Applies to range aggregations. Ranges values will depend on field. For example, if max_severity is used, ranges might look like: [ { "From": 0, "To": 70 }, { "From": 70, "To": 100 } ] |
size |
|
|
body | integer | The max number of term buckets to be returned. |
sub_aggregates |
|
|
body | list of dictionaries | A nested aggregation, such as: [ { "name": "max_first_behavior", "type": "max", "field": "first_behavior" } ] There is a maximum of 3 nested aggregations per request. |
sort |
|
|
body | string |
FQL syntax string to sort bucket results.
asc and desc using | format. Example: _count|desc
|
time_zone |
|
|
body | string | Time zone for bucket results. |
type |
|
|
body | string | Type of aggregation. Valid values include:
|
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.aggregate_allow_list(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.AggregateAllowList(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
BODY = [{
"date_ranges": date_ranges,
"field": "string",
"filter": "string",
"interval": "string",
"min_doc_count": 0,
"missing": "string",
"name": "string",
"q": "string",
"ranges": ranges,
"size": 0,
"sort": "string",
"sub_aggregates": [
null
],
"time_zone": "string",
"type": "string"
}]
response = falcon.command("AggregateAllowList", body=BODY)
print(response)
Retrieve aggregate blocklist ticket values based on the matched filter
aggregate_block_list
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
body |
|
|
body | list of dictionaries | Full body payload in JSON format. |
date_ranges |
|
|
body | list of dictionaries | Applies to date_range aggregations. Example: [ { "from": "2016-05-28T09:00:31Z", "to": "2016-05-30T09:00:31Z" }, { "from": "2016-06-01T09:00:31Z", "to": "2016-06-10T09:00:31Z" } ] |
field |
|
|
body | string | The field on which to compute the aggregation. |
filter |
|
|
body | string | FQL syntax formatted string to use to filter the results. |
interval |
|
|
body | string | Time interval for date histogram aggregations. Valid values include:
|
min_doc_count |
|
|
body | integer | Only return buckets if values are greater than or equal to the value here. |
missing |
|
|
body | string | Missing is the value to be used when the aggregation field is missing from the object. In other words, the missing parameter defines how documents that are missing a value should be treated. By default they will be ignored, but it is also possible to treat them as if they had a value. |
name |
|
|
body | string | Name of the aggregate query, as chosen by the user. Used to identify the results returned to you. |
q |
|
|
body | string | Full text search across all metadata fields. |
ranges |
|
|
body | list of dictionaries | Applies to range aggregations. Ranges values will depend on field. For example, if max_severity is used, ranges might look like: [ { "From": 0, "To": 70 }, { "From": 70, "To": 100 } ] |
size |
|
|
body | integer | The max number of term buckets to be returned. |
sub_aggregates |
|
|
body | list of dictionaries | A nested aggregation, such as: [ { "name": "max_first_behavior", "type": "max", "field": "first_behavior" } ] There is a maximum of 3 nested aggregations per request. |
sort |
|
|
body | string |
FQL syntax string to sort bucket results.
asc and desc using | format. Example: _count|desc
|
time_zone |
|
|
body | string | Time zone for bucket results. |
type |
|
|
body | string | Type of aggregation. Valid values include:
|
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.aggregate_block_list(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.AggregateBlockList(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
BODY = [{
"date_ranges": date_ranges,
"field": "string",
"filter": "string",
"interval": "string",
"min_doc_count": 0,
"missing": "string",
"name": "string",
"q": "string",
"ranges": ranges,
"size": 0,
"sort": "string",
"sub_aggregates": [
null
],
"time_zone": "string",
"type": "string"
}]
response = falcon.command("AggregateBlockList", body=BODY)
print(response)
Retrieve aggregate detection values based on the matched filter
aggregate_detections
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
body |
|
|
body | list of dictionaries | Full body payload in JSON format. |
date_ranges |
|
|
body | list of dictionaries | Applies to date_range aggregations. Example: [ { "from": "2016-05-28T09:00:31Z", "to": "2016-05-30T09:00:31Z" }, { "from": "2016-06-01T09:00:31Z", "to": "2016-06-10T09:00:31Z" } ] |
field |
|
|
body | string | The field on which to compute the aggregation. |
filter |
|
|
body | string | FQL syntax formatted string to use to filter the results. |
interval |
|
|
body | string | Time interval for date histogram aggregations. Valid values include:
|
min_doc_count |
|
|
body | integer | Only return buckets if values are greater than or equal to the value here. |
missing |
|
|
body | string | Missing is the value to be used when the aggregation field is missing from the object. In other words, the missing parameter defines how documents that are missing a value should be treated. By default they will be ignored, but it is also possible to treat them as if they had a value. |
name |
|
|
body | string | Name of the aggregate query, as chosen by the user. Used to identify the results returned to you. |
q |
|
|
body | string | Full text search across all metadata fields. |
ranges |
|
|
body | list of dictionaries | Applies to range aggregations. Ranges values will depend on field. For example, if max_severity is used, ranges might look like: [ { "From": 0, "To": 70 }, { "From": 70, "To": 100 } ] |
size |
|
|
body | integer | The max number of term buckets to be returned. |
sub_aggregates |
|
|
body | list of dictionaries | A nested aggregation, such as: [ { "name": "max_first_behavior", "type": "max", "field": "first_behavior" } ] There is a maximum of 3 nested aggregations per request. |
sort |
|
|
body | string |
FQL syntax string to sort bucket results.
asc and desc using | format. Example: _count|desc
|
time_zone |
|
|
body | string | Time zone for bucket results. |
type |
|
|
body | string | Type of aggregation. Valid values include:
|
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.aggregate_detections(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.AggregateDetections(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
BODY = [{
"date_ranges": date_ranges,
"field": "string",
"filter": "string",
"interval": "string",
"min_doc_count": 0,
"missing": "string",
"name": "string",
"q": "string",
"ranges": ranges,
"size": 0,
"sort": "string",
"sub_aggregates": [
null
],
"time_zone": "string",
"type": "string"
}]
response = falcon.command("AggregateDetections", body=BODY)
print(response)
Retrieve aggregate host/devices count based on the matched filter
aggregate_device_count_collection
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
body |
|
|
body | list of dictionaries | Full body payload in JSON format. |
date_ranges |
|
|
body | list of dictionaries | Applies to date_range aggregations. Example: [ { "from": "2016-05-28T09:00:31Z", "to": "2016-05-30T09:00:31Z" }, { "from": "2016-06-01T09:00:31Z", "to": "2016-06-10T09:00:31Z" } ] |
field |
|
|
body | string | The field on which to compute the aggregation. |
filter |
|
|
body | string | FQL syntax formatted string to use to filter the results. |
interval |
|
|
body | string | Time interval for date histogram aggregations. Valid values include:
|
min_doc_count |
|
|
body | integer | Only return buckets if values are greater than or equal to the value here. |
missing |
|
|
body | string | Missing is the value to be used when the aggregation field is missing from the object. In other words, the missing parameter defines how documents that are missing a value should be treated. By default they will be ignored, but it is also possible to treat them as if they had a value. |
name |
|
|
body | string | Name of the aggregate query, as chosen by the user. Used to identify the results returned to you. |
q |
|
|
body | string | Full text search across all metadata fields. |
ranges |
|
|
body | list of dictionaries | Applies to range aggregations. Ranges values will depend on field. For example, if max_severity is used, ranges might look like: [ { "From": 0, "To": 70 }, { "From": 70, "To": 100 } ] |
size |
|
|
body | integer | The max number of term buckets to be returned. |
sub_aggregates |
|
|
body | list of dictionaries | A nested aggregation, such as: [ { "name": "max_first_behavior", "type": "max", "field": "first_behavior" } ] There is a maximum of 3 nested aggregations per request. |
sort |
|
|
body | string |
FQL syntax string to sort bucket results.
asc and desc using | format. Example: _count|desc
|
time_zone |
|
|
body | string | Time zone for bucket results. |
type |
|
|
body | string | Type of aggregation. Valid values include:
|
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.aggregate_device_count_collection(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.AggregateDeviceCountCollection(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
BODY = [{
"date_ranges": date_ranges,
"field": "string",
"filter": "string",
"interval": "string",
"min_doc_count": 0,
"missing": "string",
"name": "string",
"q": "string",
"ranges": ranges,
"size": 0,
"sort": "string",
"sub_aggregates": [
null
],
"time_zone": "string",
"type": "string"
}]
response = falcon.command("AggregateDeviceCountCollection", body=BODY)
print(response)
Retrieve aggregate escalation ticket values based on the matched filter
aggregate_escalations
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
body |
|
|
body | list of dictionaries | Full body payload in JSON format. |
date_ranges |
|
|
body | list of dictionaries | Applies to date_range aggregations. Example: [ { "from": "2016-05-28T09:00:31Z", "to": "2016-05-30T09:00:31Z" }, { "from": "2016-06-01T09:00:31Z", "to": "2016-06-10T09:00:31Z" } ] |
field |
|
|
body | string | The field on which to compute the aggregation. |
filter |
|
|
body | string | FQL syntax formatted string to use to filter the results. |
interval |
|
|
body | string | Time interval for date histogram aggregations. Valid values include:
|
min_doc_count |
|
|
body | integer | Only return buckets if values are greater than or equal to the value here. |
missing |
|
|
body | string | Missing is the value to be used when the aggregation field is missing from the object. In other words, the missing parameter defines how documents that are missing a value should be treated. By default they will be ignored, but it is also possible to treat them as if they had a value. |
name |
|
|
body | string | Name of the aggregate query, as chosen by the user. Used to identify the results returned to you. |
q |
|
|
body | string | Full text search across all metadata fields. |
ranges |
|
|
body | list of dictionaries | Applies to range aggregations. Ranges values will depend on field. For example, if max_severity is used, ranges might look like: [ { "From": 0, "To": 70 }, { "From": 70, "To": 100 } ] |
size |
|
|
body | integer | The max number of term buckets to be returned. |
sub_aggregates |
|
|
body | list of dictionaries | A nested aggregation, such as: [ { "name": "max_first_behavior", "type": "max", "field": "first_behavior" } ] There is a maximum of 3 nested aggregations per request. |
sort |
|
|
body | string |
FQL syntax string to sort bucket results.
asc and desc using | format. Example: _count|desc
|
time_zone |
|
|
body | string | Time zone for bucket results. |
type |
|
|
body | string | Type of aggregation. Valid values include:
|
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.aggregate_escalations(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.AggregateEscalations(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
BODY = [{
"date_ranges": date_ranges,
"field": "string",
"filter": "string",
"interval": "string",
"min_doc_count": 0,
"missing": "string",
"name": "string",
"q": "string",
"ranges": ranges,
"size": 0,
"sort": "string",
"sub_aggregates": [
null
],
"time_zone": "string",
"type": "string"
}]
response = falcon.command("AggregateEscalations", body=BODY)
print(response)
Retrieve aggregate incident values based on the matched filter
aggregate_fc_incidents
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
body |
|
|
body | list of dictionaries | Full body payload in JSON format. |
date_ranges |
|
|
body | list of dictionaries | Applies to date_range aggregations. Example: [ { "from": "2016-05-28T09:00:31Z", "to": "2016-05-30T09:00:31Z" }, { "from": "2016-06-01T09:00:31Z", "to": "2016-06-10T09:00:31Z" } ] |
field |
|
|
body | string | The field on which to compute the aggregation. |
filter |
|
|
body | string | FQL syntax formatted string to use to filter the results. |
interval |
|
|
body | string | Time interval for date histogram aggregations. Valid values include:
|
min_doc_count |
|
|
body | integer | Only return buckets if values are greater than or equal to the value here. |
missing |
|
|
body | string | Missing is the value to be used when the aggregation field is missing from the object. In other words, the missing parameter defines how documents that are missing a value should be treated. By default they will be ignored, but it is also possible to treat them as if they had a value. |
name |
|
|
body | string | Name of the aggregate query, as chosen by the user. Used to identify the results returned to you. |
q |
|
|
body | string | Full text search across all metadata fields. |
ranges |
|
|
body | list of dictionaries | Applies to range aggregations. Ranges values will depend on field. For example, if max_severity is used, ranges might look like: [ { "From": 0, "To": 70 }, { "From": 70, "To": 100 } ] |
size |
|
|
body | integer | The max number of term buckets to be returned. |
sub_aggregates |
|
|
body | list of dictionaries | A nested aggregation, such as: [ { "name": "max_first_behavior", "type": "max", "field": "first_behavior" } ] There is a maximum of 3 nested aggregations per request. |
sort |
|
|
body | string |
FQL syntax string to sort bucket results.
asc and desc using | format. Example: _count|desc
|
time_zone |
|
|
body | string | Time zone for bucket results. |
type |
|
|
body | string | Type of aggregation. Valid values include:
|
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.aggregate_fc_incidents(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.AggregateFCIncidents(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
BODY = [{
"date_ranges": date_ranges,
"field": "string",
"filter": "string",
"interval": "string",
"min_doc_count": 0,
"missing": "string",
"name": "string",
"q": "string",
"ranges": ranges,
"size": 0,
"sort": "string",
"sub_aggregates": [
null
],
"time_zone": "string",
"type": "string"
}]
response = falcon.command("AggregateFCIncidents", body=BODY)
print(response)
Retrieve aggregate remediation ticket values based on the matched filter
aggregate_remediations
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
body |
|
|
body | list of dictionaries | Full body payload in JSON format. |
date_ranges |
|
|
body | list of dictionaries | Applies to date_range aggregations. Example: [ { "from": "2016-05-28T09:00:31Z", "to": "2016-05-30T09:00:31Z" }, { "from": "2016-06-01T09:00:31Z", "to": "2016-06-10T09:00:31Z" } ] |
field |
|
|
body | string | The field on which to compute the aggregation. |
filter |
|
|
body | string | FQL syntax formatted string to use to filter the results. |
interval |
|
|
body | string | Time interval for date histogram aggregations. Valid values include:
|
min_doc_count |
|
|
body | integer | Only return buckets if values are greater than or equal to the value here. |
missing |
|
|
body | string | Missing is the value to be used when the aggregation field is missing from the object. In other words, the missing parameter defines how documents that are missing a value should be treated. By default they will be ignored, but it is also possible to treat them as if they had a value. |
name |
|
|
body | string | Name of the aggregate query, as chosen by the user. Used to identify the results returned to you. |
q |
|
|
body | string | Full text search across all metadata fields. |
ranges |
|
|
body | list of dictionaries | Applies to range aggregations. Ranges values will depend on field. For example, if max_severity is used, ranges might look like: [ { "From": 0, "To": 70 }, { "From": 70, "To": 100 } ] |
size |
|
|
body | integer | The max number of term buckets to be returned. |
sub_aggregates |
|
|
body | list of dictionaries | A nested aggregation, such as: [ { "name": "max_first_behavior", "type": "max", "field": "first_behavior" } ] There is a maximum of 3 nested aggregations per request. |
sort |
|
|
body | string |
FQL syntax string to sort bucket results.
asc and desc using | format. Example: _count|desc
|
time_zone |
|
|
body | string | Time zone for bucket results. |
type |
|
|
body | string | Type of aggregation. Valid values include:
|
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.aggregate_remediations(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
response = falcon.AggregateRemediations(date_ranges=date_ranges,
field="string",
filter="string",
interval="string",
min_doc_count=integer,
missing="string",
name="string",
q="string",
ranges=ranges,
size=integer,
sort="string",
time_zone="string",
type="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
date_ranges = [
{
"from": "2021-05-15T14:55:21.892315096Z",
"to": "2021-05-17T13:42:16.493180643Z"
}
]
ranges = [
{
"From": 1,
"To": 100
}
]
BODY = [{
"date_ranges": date_ranges,
"field": "string",
"filter": "string",
"interval": "string",
"min_doc_count": 0,
"missing": "string",
"name": "string",
"q": "string",
"ranges": ranges,
"size": 0,
"sort": "string",
"sub_aggregates": [
null
],
"time_zone": "string",
"type": "string"
}]
response = falcon.command("AggregateRemediations", body=BODY)
print(response)
Retrieve allowlist tickets that match the provided filter criteria with scrolling enabled
query_allow_list_filter
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
filter |
|
|
query | string | Optional filter and sort criteria in the form of an FQL query. |
limit |
|
|
query | integer | The maximum records to return. (Max: 500). |
offset |
|
|
query | integer | Starting index of overall result set from which to return ids. |
parameters |
|
|
query | dictionary | Full query string parameters payload in JSON format. |
sort |
|
|
query | string | The property to sort on, followed by a dot (.), followed by the sort direction, either asc or desc . |
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.query_allow_list_filter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.QueryAllowListFilter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.command("QueryAllowListFilter",
limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
Retrieve block listtickets that match the provided filter criteria with scrolling enabled
query_block_list_filter
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
filter |
|
|
query | string | Optional filter and sort criteria in the form of an FQL query. |
limit |
|
|
query | integer | The maximum records to return. (Max: 500). |
offset |
|
|
query | integer | Starting index of overall result set from which to return ids. |
parameters |
|
|
query | dictionary | Full query string parameters payload in JSON format. |
sort |
|
|
query | string | The property to sort on, followed by a dot (.), followed by the sort direction, either asc or desc . |
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.query_block_list_filter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.QueryBlockListFilter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.command("QueryBlockListFilter",
limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
Retrieve DetectionsIds that match the provided FQL filter, criteria with scrolling enabled
query_detection_ids_by_filter
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
filter |
|
|
query | string | Optional filter and sort criteria in the form of an FQL query. |
limit |
|
|
query | integer | The maximum records to return. (Max: 500). |
offset |
|
|
query | integer | Starting index of overall result set from which to return ids. |
parameters |
|
|
query | dictionary | Full query string parameters payload in JSON format. |
sort |
|
|
query | string | The property to sort on, followed by a dot (.), followed by the sort direction, either asc or desc . |
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.query_detection_ids_by_filter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.QueryDetectionIdsByFilter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.command("QueryDetectionIdsByFilter",
limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
Retrieve device count collection Ids that match the provided FQL filter, criteria with scrolling enabled
get_device_count_collection_queries_by_filter
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
filter |
|
|
query | string | Optional filter and sort criteria in the form of an FQL query. |
limit |
|
|
query | integer | The maximum records to return. (Max: 500). |
offset |
|
|
query | integer | Starting index of overall result set from which to return ids. |
parameters |
|
|
query | dictionary | Full query string parameters payload in JSON format. |
sort |
|
|
query | string | The property to sort on, followed by a dot (.), followed by the sort direction, either asc or desc . |
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.get_device_count_collection_queries_by_filter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.GetDeviceCountCollectionQueriesByFilter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.command("GetDeviceCountCollectionQueriesByFilter",
limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
Retrieve escalation tickets that match the provided filter criteria with scrolling enabled
query_escalations_filter
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
filter |
|
|
query | string | Optional filter and sort criteria in the form of an FQL query. |
limit |
|
|
query | integer | The maximum records to return. (Max: 500). |
offset |
|
|
query | integer | Starting index of overall result set from which to return ids. |
parameters |
|
|
query | dictionary | Full query string parameters payload in JSON format. |
sort |
|
|
query | string | The property to sort on, followed by a dot (.), followed by the sort direction, either asc or desc . |
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.query_escalations_filter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.QueryEscalationsFilter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.command("QueryEscalationsFilter",
limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
Retrieve incidents that match the provided filter criteria with scrolling enabled
query_incident_ids_by_filter
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
filter |
|
|
query | string | Optional filter and sort criteria in the form of an FQL query. |
limit |
|
|
query | integer | The maximum records to return. (Max: 500). |
offset |
|
|
query | integer | Starting index of overall result set from which to return ids. |
parameters |
|
|
query | dictionary | Full query string parameters payload in JSON format. |
sort |
|
|
query | string | The property to sort on, followed by a dot (.), followed by the sort direction, either asc or desc . |
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.query_incident_ids_by_filter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.QueryIncidentIdsByFilter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.command("QueryIncidentIdsByFilter",
limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
Retrieve remediation tickets that match the provided filter criteria with scrolling enabled
query_remediations_filter
- Consumes: application/json
- Produces: application/json
Name | Service | Uber | Type | Data type | Description |
---|---|---|---|---|---|
filter |
|
|
query | string | Optional filter and sort criteria in the form of an FQL query. |
limit |
|
|
query | integer | The maximum records to return. (Max: 500). |
offset |
|
|
query | integer | Starting index of overall result set from which to return ids. |
parameters |
|
|
query | dictionary | Full query string parameters payload in JSON format. |
sort |
|
|
query | string | The property to sort on, followed by a dot (.), followed by the sort direction, either asc or desc . |
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.query_remediations_filter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import CompleteDashboard
# Do not hardcode API credentials!
falcon = CompleteDashboard(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.QueryRemediationsFilter(limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
from falconpy import APIHarness
# Do not hardcode API credentials!
falcon = APIHarness(client_id=CLIENT_ID,
client_secret=CLIENT_SECRET
)
response = falcon.command("QueryRemediationsFilter",
limit=integer,
sort="string",
filter="string",
offset="string"
)
print(response)
- Home
- Discussions Board
- Glossary of Terms
- Installation, Upgrades and Removal
- Samples Collection
- Using FalconPy
- API Operations
-
Service Collections
- Alerts
- API Integrations
- Cloud Connect AWS (deprecated)
- Cloud Snapshots
- Configuration Assessment
- Configuration Assessment Evaluation Logic
- Container Alerts
- Container Detections
- Container Images
- Container Packages
- Container Vulnerabilities
- CSPM Registration
- Custom IOAs
- Custom Storage
- D4C Registration (deprecated)
- Detects
- Device Control Policies
- Discover
- Drift Indicators
- Event Streams
- Exposure Management
- Falcon Complete Dashboard
- Falcon Container
- Falcon Intelligence Sandbox
- FDR
- FileVantage
- Firewall Management
- Firewall Policies
- Foundry LogScale
- Host Group
- Hosts
- Identity Protection
- Image Assessment Policies
- Incidents
- Installation Tokens
- Intel
- IOA Exclusions
- IOC
- IOCs (deprecated)
- Kubernetes Protection
- MalQuery
- Message Center
- ML Exclusions
- Mobile Enrollment
- MSSP (Flight Control)
- OAuth2
- ODS (On Demand Scan)
- Overwatch Dashboard
- Prevention Policy
- Quarantine
- Quick Scan
- Real Time Response
- Real Time Response Admin
- Real Time Response Audit
- Recon
- Report Executions
- Response Policies
- Sample Uploads
- Scheduled Reports
- Sensor Download
- Sensor Update Policy
- Sensor Visibility Exclusions
- Spotlight Evaluation Logic
- Spotlight Vulnerabilities
- Tailored Intelligence
- ThreatGraph
- Unidentified Containers
- User Management
- Workflows
- Zero Trust Assessment
- Documentation Support
-
CrowdStrike SDKs
- Crimson Falcon - Ruby
- FalconPy - Python 3
- FalconJS - Javascript
- goFalcon - Go
- PSFalcon - Powershell
- Rusty Falcon - Rust