forked from Project-MONAI/tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
unet_evaluation_ddp.py
162 lines (136 loc) · 7.27 KB
/
unet_evaluation_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright 2020 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This example shows how to execute distributed evaluation based on PyTorch native `DistributedDataParallel` module.
It can run on several nodes with multiple GPU devices on every node.
Main steps to set up the distributed evaluation:
- Execute `torch.distributed.launch` to create processes on every node for every GPU.
It receives parameters as below:
`--nproc_per_node=NUM_GPUS_PER_NODE`
`--nnodes=NUM_NODES`
`--node_rank=INDEX_CURRENT_NODE`
`--master_addr="192.168.1.1"`
`--master_port=1234`
For more details, refer to https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py.
Alternatively, we can also use `torch.multiprocessing.spawn` to start program, but it that case, need to handle
all the above parameters and compute `rank` manually, then set to `init_process_group`, etc.
`torch.distributed.launch` is even more efficient than `torch.multiprocessing.spawn`.
- Use `init_process_group` to initialize every process, every GPU runs in a separate process with unique rank.
Here we use `NVIDIA NCCL` as the backend and must set `init_method="env://"` if use `torch.distributed.launch`.
- Wrap the model with `DistributedDataParallel` after moving to expected device.
- Put model file on every node, then load and map to expected GPU device in every process.
- Wrap Dataset with `DistributedSampler`, disable the `shuffle` in sampler and DataLoader.
- Compute `Dice Metric` on every process, reduce the results after synchronization.
Note:
`torch.distributed.launch` will launch `nnodes * nproc_per_node = world_size` processes in total.
Suggest setting exactly the same software environment for every node, especially `PyTorch`, `nccl`, etc.
A good practice is to use the same MONAI docker image for all nodes directly.
Example script to execute this program on every node:
python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_PER_NODE
--nnodes=NUM_NODES --node_rank=INDEX_CURRENT_NODE
--master_addr="192.168.1.1" --master_port=1234
unet_evaluation_ddp.py -d DIR_OF_TESTDATA
This example was tested with [Ubuntu 16.04/20.04], [NCCL 2.6.3].
Referring to: https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
"""
import argparse
import os
from glob import glob
import nibabel as nib
import numpy as np
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
import monai
from monai.data import DataLoader, Dataset, create_test_image_3d, DistributedSampler, decollate_batch
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.transforms import Activations, AsChannelFirstd, AsDiscrete, Compose, LoadImaged, ScaleIntensityd
def evaluate(args):
if args.local_rank == 0 and not os.path.exists(args.dir):
# create 16 random image, mask paris for evaluation
print(f"generating synthetic data to {args.dir} (this may take a while)")
os.makedirs(args.dir)
# set random seed to generate same random data for every node
np.random.seed(seed=0)
for i in range(16):
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)
n = nib.Nifti1Image(im, np.eye(4))
nib.save(n, os.path.join(args.dir, f"img{i:d}.nii.gz"))
n = nib.Nifti1Image(seg, np.eye(4))
nib.save(n, os.path.join(args.dir, f"seg{i:d}.nii.gz"))
# initialize the distributed evaluation process, every GPU runs in a process
dist.init_process_group(backend="nccl", init_method="env://")
images = sorted(glob(os.path.join(args.dir, "img*.nii.gz")))
segs = sorted(glob(os.path.join(args.dir, "seg*.nii.gz")))
val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)]
# define transforms for image and segmentation
val_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
ScaleIntensityd(keys="img"),
]
)
# create a evaluation data loader
val_ds = Dataset(data=val_files, transform=val_transforms)
# create a evaluation data sampler
val_sampler = DistributedSampler(dataset=val_ds, even_divisible=False, shuffle=False)
# sliding window inference need to input 1 image in every iteration
val_loader = DataLoader(val_ds, batch_size=1, shuffle=False, num_workers=2, pin_memory=True, sampler=val_sampler)
dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False)
post_trans = Compose([Activations(sigmoid=True), AsDiscrete(threshold=0.5)])
# create UNet, DiceLoss and Adam optimizer
device = torch.device(f"cuda:{args.local_rank}")
torch.cuda.set_device(device)
model = monai.networks.nets.UNet(
spatial_dims=3,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(device)
# wrap the model with DistributedDataParallel module
model = DistributedDataParallel(model, device_ids=[device])
# config mapping to expected GPU device
map_location = {"cuda:0": f"cuda:{args.local_rank}"}
# load model parameters to GPU device
model.load_state_dict(torch.load("final_model.pth", map_location=map_location))
model.eval()
with torch.no_grad():
for val_data in val_loader:
val_images, val_labels = val_data["img"].to(device), val_data["seg"].to(device)
# define sliding window size and batch size for windows inference
roi_size = (96, 96, 96)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
val_outputs = [post_trans(i) for i in decollate_batch(val_outputs)]
dice_metric(y_pred=val_outputs, y=val_labels)
metric = dice_metric.aggregate().item()
dice_metric.reset()
if dist.get_rank() == 0:
print("evaluation metric:", metric)
dist.destroy_process_group()
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--dir", default="./testdata", type=str, help="directory to create random data")
# must parse the command-line argument: ``--local_rank=LOCAL_PROCESS_RANK``, which will be provided by DDP
parser.add_argument("--local_rank", type=int)
args = parser.parse_args()
evaluate(args=args)
# usage example(refer to https://github.com/pytorch/pytorch/blob/master/torch/distributed/launch.py):
# python -m torch.distributed.launch --nproc_per_node=NUM_GPUS_PER_NODE
# --nnodes=NUM_NODES --node_rank=INDEX_CURRENT_NODE
# --master_addr="192.168.1.1" --master_port=1234
# unet_evaluation_ddp.py -d DIR_OF_TESTDATA
if __name__ == "__main__":
main()