-
Notifications
You must be signed in to change notification settings - Fork 697
/
mnn_yolox.cpp
218 lines (191 loc) · 7.16 KB
/
mnn_yolox.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
//
// Created by DefTruth on 2021/10/14.
//
#include "mnn_yolox.h"
#include "lite/utils.h"
using mnncv::MNNYoloX;
MNNYoloX::MNNYoloX(const std::string &_mnn_path, unsigned int _num_threads) :
BasicMNNHandler(_mnn_path, _num_threads)
{
initialize_pretreat();
}
inline void MNNYoloX::initialize_pretreat()
{
pretreat = std::shared_ptr<MNN::CV::ImageProcess>(
MNN::CV::ImageProcess::create(
MNN::CV::BGR,
MNN::CV::RGB,
mean_vals, 3,
norm_vals, 3
)
);
}
inline void MNNYoloX::transform(const cv::Mat &mat_rs)
{
// normalize & HWC -> CHW & BGR -> RGB
pretreat->convert(mat_rs.data, input_width, input_height, mat_rs.step[0], input_tensor);
}
void MNNYoloX::resize_unscale(const cv::Mat &mat, cv::Mat &mat_rs,
int target_height, int target_width,
YoloXScaleParams &scale_params)
{
if (mat.empty()) return;
int img_height = static_cast<int>(mat.rows);
int img_width = static_cast<int>(mat.cols);
mat_rs = cv::Mat(target_height, target_width, CV_8UC3,
cv::Scalar(114, 114, 114));
// scale ratio (new / old) new_shape(h,w)
float w_r = (float) target_width / (float) img_width;
float h_r = (float) target_height / (float) img_height;
float r = std::min(w_r, h_r);
// compute padding
int new_unpad_w = static_cast<int>((float) img_width * r); // floor
int new_unpad_h = static_cast<int>((float) img_height * r); // floor
int pad_w = target_width - new_unpad_w; // >=0
int pad_h = target_height - new_unpad_h; // >=0
int dw = pad_w / 2;
int dh = pad_h / 2;
// resize with unscaling
cv::Mat new_unpad_mat;
// cv::Mat new_unpad_mat = mat.clone(); // may not need clone.
cv::resize(mat, new_unpad_mat, cv::Size(new_unpad_w, new_unpad_h));
new_unpad_mat.copyTo(mat_rs(cv::Rect(dw, dh, new_unpad_w, new_unpad_h)));
// record scale params.
scale_params.r = r;
scale_params.dw = dw;
scale_params.dh = dh;
scale_params.new_unpad_w = new_unpad_w;
scale_params.new_unpad_h = new_unpad_h;
scale_params.flag = true;
}
void MNNYoloX::detect(const cv::Mat &mat, std::vector<types::Boxf> &detected_boxes,
float score_threshold, float iou_threshold,
unsigned int topk, unsigned int nms_type)
{
if (mat.empty()) return;
int img_height = static_cast<int>(mat.rows);
int img_width = static_cast<int>(mat.cols);
// resize & unscale
cv::Mat mat_rs;
YoloXScaleParams scale_params;
this->resize_unscale(mat, mat_rs, input_height, input_width, scale_params);
// 1. make input tensor
this->transform(mat_rs);
// 2. inference scores & boxes.
mnn_interpreter->runSession(mnn_session);
auto output_tensors = mnn_interpreter->getSessionOutputAll(mnn_session);
// 3. rescale & exclude.
std::vector<types::Boxf> bbox_collection;
this->generate_bboxes(scale_params, bbox_collection, output_tensors, score_threshold, img_height, img_width);
// 4. hard|blend|offset nms with topk.
this->nms(bbox_collection, detected_boxes, iou_threshold, topk, nms_type);
}
void MNNYoloX::generate_anchors(const int target_height,
const int target_width,
std::vector<int> &strides,
std::vector<YoloXAnchor> &anchors)
{
for (auto stride : strides)
{
int num_grid_w = target_width / stride;
int num_grid_h = target_height / stride;
for (int g1 = 0; g1 < num_grid_h; ++g1)
{
for (int g0 = 0; g0 < num_grid_w; ++g0)
{
#ifdef LITE_WIN32
YoloXAnchor anchor;
anchor.grid0 = g0;
anchor.grid1 = g1;
anchor.stride = stride;
anchors.push_back(anchor);
#else
anchors.push_back((YoloXAnchor) {g0, g1, stride});
#endif
}
}
}
}
void MNNYoloX::generate_bboxes(const YoloXScaleParams &scale_params,
std::vector<types::Boxf> &bbox_collection,
const std::map<std::string, MNN::Tensor *> &output_tensors,
float score_threshold, int img_height,
int img_width)
{
// device tensors
auto device_pred_ptr = output_tensors.at("outputs");
// (1,n,85=5+80=cxcy+cwch+obj_conf+cls_conf)
MNN::Tensor host_pred_tensor(device_pred_ptr, device_pred_ptr->getDimensionType()); // NCHW
device_pred_ptr->copyToHostTensor(&host_pred_tensor);
auto pred_dims = host_pred_tensor.shape();
const unsigned int num_anchors = pred_dims.at(1); // n = ?
const unsigned int num_classes = pred_dims.at(2) - 5;
std::vector<YoloXAnchor> anchors;
std::vector<int> strides = {8, 16, 32}; // might have stride=64
this->generate_anchors(input_height, input_width, strides, anchors);
float r_ = scale_params.r;
int dw_ = scale_params.dw;
int dh_ = scale_params.dh;
bbox_collection.clear();
unsigned int count = 0;
for (unsigned int i = 0; i < num_anchors; ++i)
{
const float *offset_obj_cls_ptr =
host_pred_tensor.host<float>() + (i * (num_classes + 5)); // row ptr
float obj_conf = offset_obj_cls_ptr[4];
if (obj_conf < score_threshold) continue; // filter first.
float cls_conf = offset_obj_cls_ptr[5];
unsigned int label = 0;
for (unsigned int j = 0; j < num_classes; ++j)
{
float tmp_conf = offset_obj_cls_ptr[j + 5];
if (tmp_conf > cls_conf)
{
cls_conf = tmp_conf;
label = j;
}
} // argmax
float conf = obj_conf * cls_conf; // cls_conf (0.,1.)
if (conf < score_threshold) continue; // filter
const int grid0 = anchors.at(i).grid0;
const int grid1 = anchors.at(i).grid1;
const int stride = anchors.at(i).stride;
float dx = offset_obj_cls_ptr[0];
float dy = offset_obj_cls_ptr[1];
float dw = offset_obj_cls_ptr[2];
float dh = offset_obj_cls_ptr[3];
float cx = (dx + (float) grid0) * (float) stride;
float cy = (dy + (float) grid1) * (float) stride;
float w = std::exp(dw) * (float) stride;
float h = std::exp(dh) * (float) stride;
float x1 = ((cx - w / 2.f) - (float) dw_) / r_;
float y1 = ((cy - h / 2.f) - (float) dh_) / r_;
float x2 = ((cx + w / 2.f) - (float) dw_) / r_;
float y2 = ((cy + h / 2.f) - (float) dh_) / r_;
types::Boxf box;
box.x1 = std::max(0.f, x1);
box.y1 = std::max(0.f, y1);
box.x2 = std::min(x2, (float) img_width - 1.f);
box.y2 = std::min(y2, (float) img_height - 1.f);
box.score = conf;
box.label = label;
box.label_text = class_names[label];
box.flag = true;
bbox_collection.push_back(box);
count += 1; // limit boxes for nms.
if (count > max_nms)
break;
}
#if LITEMNN_DEBUG
std::cout << "detected num_anchors: " << num_anchors << "\n";
std::cout << "generate_bboxes num: " << bbox_collection.size() << "\n";
#endif
}
void MNNYoloX::nms(std::vector<types::Boxf> &input, std::vector<types::Boxf> &output,
float iou_threshold, unsigned int topk,
unsigned int nms_type)
{
if (nms_type == NMS::BLEND) lite::utils::blending_nms(input, output, iou_threshold, topk);
else if (nms_type == NMS::OFFSET) lite::utils::offset_nms(input, output, iou_threshold, topk);
else lite::utils::hard_nms(input, output, iou_threshold, topk);
}