-
Notifications
You must be signed in to change notification settings - Fork 60
/
ssim.py
108 lines (85 loc) · 3.47 KB
/
ssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import torch.nn.functional as F
from math import exp
import numpy as np
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]).double()
# gauss.requires_grad = True
return gauss/gauss.sum()
def create_window(window_size):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).double().unsqueeze(0).unsqueeze(0)
window = _2D_window.expand(1, 1, window_size, window_size).contiguous()
return window.cuda()
def ssim(img1, img2, window_size=11, size_average=True, full=False, val_range=None):
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
if val_range is None:
if torch.max(img1) > 128:
max_val = 255
else:
max_val = 1
if torch.min(img1) < -0.5:
min_val = -1
else:
min_val = 0
L = max_val - min_val
else:
L = val_range
padd = 0
(_, channels, height, width) = img1.size()
real_size = min(window_size, height, width)
window = create_window(real_size)
ret_channels = []
cs_channels = []
for ch in range(channels): # loop over channels, then average
img1_ch = torch.unsqueeze(img1[:, ch, :, :], 1)
img2_ch = torch.unsqueeze(img2[:, ch, :, :], 1)
mu1 = F.conv2d(img1_ch, window, padding=padd)
mu2 = F.conv2d(img2_ch, window, padding=padd)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1_ch * img1_ch, window, padding=padd) - mu1_sq
sigma2_sq = F.conv2d(img2_ch * img2_ch, window, padding=padd) - mu2_sq
sigma12 = F.conv2d(img1_ch * img2_ch, window, padding=padd) - mu1_mu2
C1 = (0.01 * L) ** 2
C2 = (0.03 * L) ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
v1 = 2.0 * sigma12 + C2
v2 = sigma1_sq + sigma2_sq + C2
cs = torch.mean(v1 / v2) # contrast sensitivity
if size_average:
ret = ssim_map.mean()
else:
ret = ssim_map.mean(1).mean(1).mean(1)
cs_channels.append(cs)
ret_channels.append(ret)
cs_mean = torch.mean(torch.stack(cs_channels), dim=-1)
ret_mean = torch.mean(torch.stack(ret_channels), dim=-1)
if full:
return ret_mean, cs_mean
return ret_mean
def msssim(img1, img2, window_size=11, size_average=True, val_range=None):
device = img1.device
weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(device)
levels = weights.size()[0]
mssim = []
mcs = []
for _ in range(levels):
sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range)
mssim.append(sim)
mcs.append(cs)
img1 = F.avg_pool2d(img1, (2, 2))
img2 = F.avg_pool2d(img2, (2, 2))
mssim = torch.stack(mssim)
mcs = torch.stack(mcs)
# # Normalize (to avoid NaNs)
#
# mssim = (mssim + 1) / 2
# mcs = (mcs + 1) / 2
pow1 = mcs ** weights
pow2 = mssim ** weights
# output = torch.prod(pow1 * pow2)
# From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/
output = torch.prod(pow1[:-1] * pow2[-1])
return output