forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_classifier.py
380 lines (327 loc) · 13.8 KB
/
run_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT classification finetuning runner in tf2.0."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import math
import os
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
# pylint: disable=g-import-not-at-top,redefined-outer-name,reimported
from official.modeling import model_training_utils
from official.nlp import bert_modeling as modeling
from official.nlp import bert_models
from official.nlp import optimization
from official.nlp.bert import common_flags
from official.nlp.bert import input_pipeline
from official.nlp.bert import model_saving_utils
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
flags.DEFINE_enum(
'mode', 'train_and_eval', ['train_and_eval', 'export_only'],
'One of {"train_and_eval", "export_only"}. `train_and_eval`: '
'trains the model and evaluates in the meantime. '
'`export_only`: will take the latest checkpoint inside '
'model_dir and export a `SavedModel`.')
flags.DEFINE_string('train_data_path', None,
'Path to training data for BERT classifier.')
flags.DEFINE_string('eval_data_path', None,
'Path to evaluation data for BERT classifier.')
# Model training specific flags.
flags.DEFINE_string(
'input_meta_data_path', None,
'Path to file that contains meta data about input '
'to be used for training and evaluation.')
flags.DEFINE_integer('train_batch_size', 32, 'Batch size for training.')
flags.DEFINE_integer('eval_batch_size', 32, 'Batch size for evaluation.')
common_flags.define_common_bert_flags()
FLAGS = flags.FLAGS
def get_loss_fn(num_classes, loss_factor=1.0):
"""Gets the classification loss function."""
def classification_loss_fn(labels, logits):
"""Classification loss."""
labels = tf.squeeze(labels)
log_probs = tf.nn.log_softmax(logits, axis=-1)
one_hot_labels = tf.one_hot(
tf.cast(labels, dtype=tf.int32), depth=num_classes, dtype=tf.float32)
per_example_loss = -tf.reduce_sum(
tf.cast(one_hot_labels, dtype=tf.float32) * log_probs, axis=-1)
loss = tf.reduce_mean(per_example_loss)
loss *= loss_factor
return loss
return classification_loss_fn
def get_dataset_fn(input_file_pattern, max_seq_length, global_batch_size,
is_training):
"""Gets a closure to create a dataset."""
def _dataset_fn(ctx=None):
"""Returns tf.data.Dataset for distributed BERT pretraining."""
batch_size = ctx.get_per_replica_batch_size(
global_batch_size) if ctx else global_batch_size
dataset = input_pipeline.create_classifier_dataset(
input_file_pattern,
max_seq_length,
batch_size,
is_training=is_training,
input_pipeline_context=ctx)
return dataset
return _dataset_fn
def run_bert_classifier(strategy,
bert_config,
input_meta_data,
model_dir,
epochs,
steps_per_epoch,
steps_per_loop,
eval_steps,
warmup_steps,
initial_lr,
init_checkpoint,
train_input_fn,
eval_input_fn,
custom_callbacks=None,
run_eagerly=False,
use_keras_compile_fit=False):
"""Run BERT classifier training using low-level API."""
max_seq_length = input_meta_data['max_seq_length']
num_classes = input_meta_data['num_labels']
def _get_classifier_model():
"""Gets a classifier model."""
classifier_model, core_model = (
bert_models.classifier_model(
bert_config,
tf.float32,
num_classes,
max_seq_length,
hub_module_url=FLAGS.hub_module_url))
classifier_model.optimizer = optimization.create_optimizer(
initial_lr, steps_per_epoch * epochs, warmup_steps)
if FLAGS.fp16_implementation == 'graph_rewrite':
# Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
# determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
# which will ensure tf.compat.v2.keras.mixed_precision and
# tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
# up.
classifier_model.optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
classifier_model.optimizer)
return classifier_model, core_model
# During distributed training, loss used for gradient computation is
# summed over from all replicas. When Keras compile/fit() API is used,
# the fit() API internally normalizes the loss by dividing the loss by
# the number of replicas used for computation. However, when custom
# training loop is used this is not done automatically and should be
# done manually by the end user.
loss_multiplier = 1.0
if FLAGS.scale_loss and not use_keras_compile_fit:
loss_multiplier = 1.0 / strategy.num_replicas_in_sync
loss_fn = get_loss_fn(num_classes, loss_factor=loss_multiplier)
# Defines evaluation metrics function, which will create metrics in the
# correct device and strategy scope.
def metric_fn():
return tf.keras.metrics.SparseCategoricalAccuracy(
'test_accuracy', dtype=tf.float32)
if use_keras_compile_fit:
# Start training using Keras compile/fit API.
logging.info('Training using TF 2.0 Keras compile/fit API with '
'distribution strategy.')
return run_keras_compile_fit(
model_dir,
strategy,
_get_classifier_model,
train_input_fn,
eval_input_fn,
loss_fn,
metric_fn,
init_checkpoint,
epochs,
steps_per_epoch,
eval_steps,
custom_callbacks=None)
# Use user-defined loop to start training.
logging.info('Training using customized training loop TF 2.0 with '
'distribution strategy.')
return model_training_utils.run_customized_training_loop(
strategy=strategy,
model_fn=_get_classifier_model,
loss_fn=loss_fn,
model_dir=model_dir,
steps_per_epoch=steps_per_epoch,
steps_per_loop=steps_per_loop,
epochs=epochs,
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
eval_steps=eval_steps,
init_checkpoint=init_checkpoint,
metric_fn=metric_fn,
custom_callbacks=custom_callbacks,
run_eagerly=run_eagerly)
def run_keras_compile_fit(model_dir,
strategy,
model_fn,
train_input_fn,
eval_input_fn,
loss_fn,
metric_fn,
init_checkpoint,
epochs,
steps_per_epoch,
eval_steps,
custom_callbacks=None):
"""Runs BERT classifier model using Keras compile/fit API."""
with strategy.scope():
training_dataset = train_input_fn()
evaluation_dataset = eval_input_fn()
bert_model, sub_model = model_fn()
optimizer = bert_model.optimizer
if init_checkpoint:
checkpoint = tf.train.Checkpoint(model=sub_model)
checkpoint.restore(init_checkpoint).assert_existing_objects_matched()
bert_model.compile(optimizer=optimizer, loss=loss_fn, metrics=[metric_fn()])
summary_dir = os.path.join(model_dir, 'summaries')
summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
checkpoint_path = os.path.join(model_dir, 'checkpoint')
checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
checkpoint_path, save_weights_only=True)
if custom_callbacks is not None:
custom_callbacks += [summary_callback, checkpoint_callback]
else:
custom_callbacks = [summary_callback, checkpoint_callback]
bert_model.fit(
x=training_dataset,
validation_data=evaluation_dataset,
steps_per_epoch=steps_per_epoch,
epochs=epochs,
validation_steps=eval_steps,
callbacks=custom_callbacks)
return bert_model
def export_classifier(model_export_path, input_meta_data,
restore_model_using_load_weights,
bert_config, model_dir):
"""Exports a trained model as a `SavedModel` for inference.
Args:
model_export_path: a string specifying the path to the SavedModel directory.
input_meta_data: dictionary containing meta data about input and model.
restore_model_using_load_weights: Whether to use checkpoint.restore() API
for custom checkpoint or to use model.load_weights() API.
There are 2 different ways to save checkpoints. One is using
tf.train.Checkpoint and another is using Keras model.save_weights().
Custom training loop implementation uses tf.train.Checkpoint API
and Keras ModelCheckpoint callback internally uses model.save_weights()
API. Since these two API's cannot be used together, model loading logic
must be take into account how model checkpoint was saved.
bert_config: Bert configuration file to define core bert layers.
model_dir: The directory where the model weights and training/evaluation
summaries are stored.
Raises:
Export path is not specified, got an empty string or None.
"""
if not model_export_path:
raise ValueError('Export path is not specified: %s' % model_export_path)
if not model_dir:
raise ValueError('Export path is not specified: %s' % model_dir)
classifier_model = bert_models.classifier_model(
bert_config, tf.float32, input_meta_data['num_labels'],
input_meta_data['max_seq_length'])[0]
model_saving_utils.export_bert_model(
model_export_path,
model=classifier_model,
checkpoint_dir=model_dir,
restore_model_using_load_weights=restore_model_using_load_weights)
def run_bert(strategy,
input_meta_data,
train_input_fn=None,
eval_input_fn=None):
"""Run BERT training."""
if FLAGS.model_type == 'bert':
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
else:
assert FLAGS.model_type == 'albert'
bert_config = modeling.AlbertConfig.from_json_file(FLAGS.bert_config_file)
if FLAGS.mode == 'export_only':
# As Keras ModelCheckpoint callback used with Keras compile/fit() API
# internally uses model.save_weights() to save checkpoints, we must
# use model.load_weights() when Keras compile/fit() is used.
export_classifier(FLAGS.model_export_path, input_meta_data,
FLAGS.use_keras_compile_fit,
bert_config, FLAGS.model_dir)
return
if FLAGS.mode != 'train_and_eval':
raise ValueError('Unsupported mode is specified: %s' % FLAGS.mode)
# Enables XLA in Session Config. Should not be set for TPU.
keras_utils.set_config_v2(FLAGS.enable_xla)
epochs = FLAGS.num_train_epochs
train_data_size = input_meta_data['train_data_size']
steps_per_epoch = int(train_data_size / FLAGS.train_batch_size)
warmup_steps = int(epochs * train_data_size * 0.1 / FLAGS.train_batch_size)
eval_steps = int(
math.ceil(input_meta_data['eval_data_size'] / FLAGS.eval_batch_size))
if not strategy:
raise ValueError('Distribution strategy has not been specified.')
trained_model = run_bert_classifier(
strategy,
bert_config,
input_meta_data,
FLAGS.model_dir,
epochs,
steps_per_epoch,
FLAGS.steps_per_loop,
eval_steps,
warmup_steps,
FLAGS.learning_rate,
FLAGS.init_checkpoint,
train_input_fn,
eval_input_fn,
run_eagerly=FLAGS.run_eagerly,
use_keras_compile_fit=FLAGS.use_keras_compile_fit)
if FLAGS.model_export_path:
# As Keras ModelCheckpoint callback used with Keras compile/fit() API
# internally uses model.save_weights() to save checkpoints, we must
# use model.load_weights() when Keras compile/fit() is used.
model_saving_utils.export_bert_model(
FLAGS.model_export_path,
model=trained_model,
restore_model_using_load_weights=FLAGS.use_keras_compile_fit)
return trained_model
def main(_):
# Users should always run this script under TF 2.x
assert tf.version.VERSION.startswith('2.')
with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
input_meta_data = json.loads(reader.read().decode('utf-8'))
if not FLAGS.model_dir:
FLAGS.model_dir = '/tmp/bert20/'
strategy = distribution_utils.get_distribution_strategy(
distribution_strategy=FLAGS.distribution_strategy,
num_gpus=FLAGS.num_gpus,
tpu_address=FLAGS.tpu)
max_seq_length = input_meta_data['max_seq_length']
train_input_fn = get_dataset_fn(
FLAGS.train_data_path,
max_seq_length,
FLAGS.train_batch_size,
is_training=True)
eval_input_fn = get_dataset_fn(
FLAGS.eval_data_path,
max_seq_length,
FLAGS.eval_batch_size,
is_training=False)
run_bert(strategy, input_meta_data, train_input_fn, eval_input_fn)
if __name__ == '__main__':
flags.mark_flag_as_required('bert_config_file')
flags.mark_flag_as_required('input_meta_data_path')
flags.mark_flag_as_required('model_dir')
app.run(main)