forked from yongleex/DiffeomorphicPIV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deformpiv.py
276 lines (224 loc) · 9.69 KB
/
deformpiv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
from openpiv import tools, scaling, pyprocess, validation, filters
from UnFlowNet.models import Network, device, estimate
import torch
import torch.nn as nn
import torch.nn.functional as F
""" Basic functions
"""
class AttrDict(dict):
__setattr__ = dict.__setitem__
__getattr__ = dict.__getitem__
# interpolation with opencv
def remap(img, x, y):
x, y = np.float32(x), np.float32(y)
out = cv2.remap(img, x, y, cv2.INTER_CUBIC) # INTER_LANCZOS4 INTER_CUBIC INTER_LINEAR
return out
# griddes sparse vector to dense field
def sparse2dense(x, y, u, v, sz):
dx, dy = np.meshgrid(np.arange(sz[1]), np.arange(sz[0]))
dx = (dx-x[0,0])/(x[0,1]-x[0,0])
dy = (dy-y[0,0])/(y[1,0]-y[0,0])
du = remap(u, dx, dy)
dv = remap(v, dx, dy)
return dx, dy, du, dv
# piv kernel with Open PIV package
def openpiv(frame_a, frame_b, winsz=32, overlap=24):
# process image pair with extended search area piv algorithm.
u, v, sig2noise = pyprocess.extended_search_area_piv( frame_a, frame_b, \
window_size=winsz, overlap=overlap, dt=1.0, search_area_size=winsz, sig2noise_method='peak2peak')
u1, v1, mask = validation.sig2noise_val(u.copy(), v.copy(), sig2noise, threshold = 1.5 )
u = u if np.sum(mask)==np.prod(mask.shape) else u1
v = v if np.sum(mask)==np.prod(mask.shape) else v1
u, v = filters.replace_outliers( u, v, method='localmean', max_iter=10, kernel_size=2)
# get window centers coordinates
x, y = pyprocess.get_coordinates( image_size=frame_a.shape, search_area_size=winsz, overlap=overlap)
return x, y, u, v
# piv kernel with optical flow (opencv)
def opticalflow(img1, img2, level=4):
flow1 = cv2.calcOpticalFlowFarneback(img1, img2, None, 0.5, level, 33, 11, 9, 1.3, 0)
flow2 = cv2.calcOpticalFlowFarneback(img2, img1, None, 0.5, level, 33, 11, 9, 1.3, 0)
flow = (flow1-flow2)/2
u, v = flow[...,0], flow[...,1]
x, y = np.meshgrid(np.arange(img1.shape[1]), np.arange(img1.shape[0]))
return x, y, u, v
# piv kernel with deep neural networks
""" https://github.com/erizmr/UnLiteFlowNet-PIV
Unsupervised learning of Particle Image Velocimetry
"""
def _loadNet():
PATH = './UnFlowNet/UnsupervisedLiteFlowNet_pretrained.pt'
unliteflownet.load_state_dict(torch.load(PATH)['model_state_dict'])
unliteflownet.eval()
unliteflownet.to(device)
print('unliteflownet load successfully.')
unliteflownet = Network()
_loadNet()
def deeppiv1(img1, img2):
# The input of the network is recommended to be (256, 256)
assert img1.shape == img2.shape #== (256,256)
sz = img1.shape
h, w = sz[0], sz[1]
x1 = torch.Tensor(img1/255.0).view(1,1,sz[0],sz[1])
x2 = torch.Tensor(img2/255.0).view(1,1,sz[0],sz[1])
if img1.shape != (256, 256):
x1 = F.interpolate(x1, (256, 256), mode='bilinear', align_corners=False)
x2 = F.interpolate(x2, (256, 256), mode='bilinear', align_corners=False)
y_pre = estimate(x1.to(device), x2.to(device), unliteflownet, train=False)
y_pre = F.interpolate(y_pre, (h, w), mode='bilinear', align_corners=False)
u = y_pre[0][0].detach()
v = y_pre[0][1].detach()
u = u.numpy()
v = v.numpy()
x, y = np.meshgrid(np.arange(img1.shape[1]), np.arange(img1.shape[0]))
return x, y, u, v
def deeppiv(img1, img2):
# The input of the network is recommended to be (256, 256)
assert img1.shape == img2.shape #== (256,256)
sz = img1.shape
h, w = sz[0], sz[1]
x1 = torch.Tensor(img1/255.0).view(1,1,sz[0],sz[1])
x2 = torch.Tensor(img2/255.0).view(1,1,sz[0],sz[1])
if img1.shape[0] != 256 or img1.shape[1] != 256:
s = 16
# padding zero to 256+n*(256-2s) >= h+2s
nx, ny = (h+2*s-256-1)//(256-2*s)+2, (w+2*s-256-1)//(256-2*s)+2
px = 256+(nx-1)*(256-2*s)-h
py = 256+(ny-1)*(256-2*s)-w
pad_x1 = F.pad(x1, (s, py-s, s, px-s), "constant", 0)
pad_x2 = F.pad(x2, (s, py-s, s, px-s), "constant", 0)
hp1, wp1 = pad_x1.shape[2], pad_x1.shape[3]
# print("padding size", pad_x1.shape)
# change the shape to B*1*256*256, reorganise the large image to patches
win_x1 = nn.Unfold(kernel_size=(256, 256), stride=((256-2*s), (256-2*s)))(pad_x1)
win_x1 = win_x1.permute(2, 0, 1) # B*N*(w*h)
win_x1 = win_x1.reshape(win_x1.shape[0], win_x1.shape[1], 256, 256) # B*N*w*h
win_x2 = nn.Unfold(kernel_size=(256, 256), stride=((256-2*s), (256-2*s)))(pad_x2)
win_x2 = win_x2.permute(2, 0, 1) # B*N*(w*h)
win_x2 = win_x2.reshape(win_x2.shape[0], win_x2.shape[1], 256, 256) # B*N*w*h
# print("win_x1.shape", win_x1.shape, x1.shape)
with torch.no_grad():
torch.cuda.empty_cache()
y_pre = estimate(win_x1.to(device), win_x2.to(device), unliteflownet, train=False)
y_pre = y_pre[:, :, s:-s, s:-s]
# change back
sz = (nx, ny, 2, y_pre.shape[2], y_pre.shape[3])
y_pre = y_pre.reshape(sz)
y_pre = y_pre.permute(2, 0, 3, 1, 4) # B*2*256*256-> 2*B*256*256
y_pre = y_pre.reshape(2, (256-2*s)*nx, (256-2*s)*ny)
y_pre = y_pre.detach().numpy()
u, v = y_pre[0,:,:], y_pre[1,:,:]
u = u[:h, :w]
v = v[:h, :w]
assert u.shape == img1.shape # check the shape
else:
with torch.no_grad():
torch.cuda.empty_cache()
y_pre = estimate(x1.to(device), x2.to(device), unliteflownet, train=False)
u = y_pre[0][0].detach().numpy()
v = y_pre[0][1].detach().numpy()
x, y = np.meshgrid(np.arange(img1.shape[1]), np.arange(img1.shape[0]))
return x, y, u, v
""" image warping with deformation field or velocity field.
"""
def deform(u, v, delta=1, n_iter=10):
""" Generate deformation field
Integrates a vector field via scaling and squaring.
adopted from https://github.com/voxelmorph/voxelmorph/blob/dev/voxelmorph/torch/layers.py
"""
assert u.shape == v.shape
x, y = np.meshgrid(np.arange(u.shape[1]), np.arange(u.shape[0]))
u, v = u/delta, v/delta
dx, dy = u/2**n_iter, v/2**n_iter
for iter in range(n_iter):
dx_new = dx + remap(dx, x+dx, y+dy)
dy_new = dy + remap(dy, x+dx, y+dy)
dx, dy = dx_new, dy_new
dx, dy = dx*delta, dy*delta
return dx, dy
def warping(img1, img2, u, v, method='CDI'):
# FDI: out1(x,y)=img1(x+u, y+v)
# FDI, CDI, FDDI, CDDI
assert img1.shape == img2.shape == u.shape == v.shape
x, y = np.meshgrid(np.arange(u.shape[1]), np.arange(u.shape[0]))
u, v = -u, -v
if method == 'FDI':
out1= remap(img1, x+u, y+v)
out2= img2.copy()
elif method == 'FDI2':
out1= img1.copy()
out2= remap(img2, x-u, y-v)
elif method == 'CDI':
out1= remap(img1, x+0.5*u, y+0.5*v)
out2= remap(img2, x-0.5*u, y-0.5*v)
elif method == 'FDDI':
dx, dy = deform(u, v, delta=1)
out1= remap(img1, x+dx, y+dy)
out2= img2.copy()
elif method == 'FDDI2':
dx, dy = deform(-u, -v, delta=1)
out1= img1.copy()
out2= remap(img2, x+dx, y+dy)
elif method == 'CDDI':
dx1, dy1 = deform(0.5*u, 0.5*v, delta=1)
dx2, dy2 = deform(-0.5*u, -0.5*v, delta=1)
out1= remap(img1, x+dx1, y+dy1)
out2= remap(img2, x+dx2, y+dy2)
else:
raise NotImplementedError
return out1, out2
# Our wrapper for iterative deformation PIV
class DeformPIV():
def __init__(self, config):
self._c = config
assert self._c.pivmethod in ['opticalflow', 'openpiv', 'deeppiv']
assert self._c.deform in ['FDI', 'FDI2', 'CDI', 'FDDI', 'FDDI2', 'CDDI']
self.onepass = eval(self._c.pivmethod) # opticalflow1
self.warping = self._c.deform
def compute(self, image1, image2, u=None, v=None):
# obtain the initial vector field
if u is not None:
assert image1.shape == image2.shape == u.shape == v.shape
else:
assert image1.shape == image2.shape
x, y, u, v = self.onepass(image1, image2)
# iterative operation
for iter in range(self._c.runs):
# using a blur trick to make the iteration stable
smooth_k = 3 if u.shape != image1.shape else 9
for i in range(2):
u = cv2.blur(u, (smooth_k,smooth_k)) # using 19
v = cv2.blur(v, (smooth_k,smooth_k))
# sparse vector to dense field, if needed
if u.shape != image1.shape:
xd, yd, ud, vd = sparse2dense(x, y, u, v, image1.shape)
else:
ud, vd = u, v
# image warping
# warp = self.warping if iter > -2 else 'CDI'
img1, img2 = warping(image1, image2, ud, vd, self.warping)
# update the estimation
if self._c.pivmethod == 'opticalflow':
x, y, du, dv = self.onepass(img1, img2, level=0)
elif self._c.pivmethod == 'openpiv':
# x, y, du, dv = self.onepass(img1, img2, winsz=16, overlap=8)
x, y, du, dv = self.onepass(img1, img2)
elif self._c.pivmethod == 'deeppiv':
x, y, du, dv = self.onepass(img1, img2)
else:
raise NotImplementedError
if u.shape !=du.shape:
u = remap(ud, x, y)
v = remap(ud, x, y)
u, v = u+du, v+dv
# print('The mean of increasing amplitude:',np.mean(np.sqrt(du**2+dv**2)))
# # Debug plot, save the images as .png files
# for k, img in enumerate([image1, img1, img2, image2]):
# fig = plt.figure(figsize=(12,12))
# plt.imshow(img)
# plt.savefig(f"{iter}img{k+1}.png")
# plt.close(fig)
return x, y, u, v