-
Notifications
You must be signed in to change notification settings - Fork 19
/
calibrate.py
318 lines (261 loc) · 12.3 KB
/
calibrate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import sys
import time
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit, leastsq
from socketIO_client import SocketIO, BaseNamespace
from scipy.linalg import lstsq
import scipy, scipy.optimize
import asyncio
from threading import Thread
import json
import optparse
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
VALID_FIT_TYPES = ['sigmoid', 'linear', 'constant', '3d']
data_received = False
calibration = None
input_data = None
dpu_evolver_ns = None
class EvolverNamespace(BaseNamespace):
def on_connect(self, *args):
global connected
print("Connected to eVOLVER as client")
connected = True
def on_disconnect(self, *args):
global connected
print("Disconected from eVOLVER as client")
connected = False
def on_reconnect(self, *args):
global connected, stop_waiting
print("Reconnected to eVOLVER as client")
connected = True
stop_waiting = True
def on_calibration(self, data):
global data_received, calibration, input_data
calibration = data
data_received = True
def on_calibrationnames(self, data):
global data_received
for calibration_name in data:
print(calibration_name)
data_received = True
def sigmoid(x, a, b, c, d):
return a + (b - a)/(1 + (10**((c-x)*d)))
def linear(x, a, b):
return np.array(x)*a + b
def three_dim(data, c0, c1, c2, c3, c4, c5):
x = data[0]
y = data[1]
return c0 + c1*x + c2*y + c3*x**2 + c4*x*y + c5*y**2
def sigmoid_fit(calibration, fit_name, params, graph = True):
coefficients = []
# For single param calibrations, just take the first value from the returned dictionary
calibration_data = list(process_vial_data(calibration, param = params[0]).values())[0]
medians = calibration_data["medians"]
standard_deviations = calibration_data["standard_deviations"]
measured_data = calibration_data["measured_data"]
for i in range(16):
paramsig, paramlin = curve_fit(sigmoid, measured_data[i], medians[i], p0 = [62721, 62721, 0, -1], maxfev=1000000000)
coefficients.append(np.array(paramsig).tolist())
print(coefficients)
if graph:
graph_2d_data(sigmoid, measured_data, medians, standard_deviations, coefficients, fit_name, 'sigmoid', 0, max([max(sublist) for sublist in measured_data]), 500)
return create_fit(coefficients, fit_name, "sigmoid", time.time(), params)
def linear_fit(calibration, fit_name, params, graph = True):
coefficients = []
# For single param calibrations, just take the first value from the returned dictionary
calibration_data = list(process_vial_data(calibration, param = params[0]).values())[0]
medians = calibration_data["medians"]
standard_deviations = calibration_data["standard_deviations"]
measured_data = calibration_data["measured_data"]
for i in range(16):
paramlin, cov = curve_fit(linear, medians[i], measured_data[i])
coefficients.append(paramlin.tolist())
print(coefficients)
if graph:
graph_2d_data(linear, medians, measured_data, standard_deviations, coefficients, fit_name, 'linear', 500, 3000, 50)
return create_fit(coefficients, fit_name, "linear", time.time(), params)
def constant_fit(calibration, fit_name, params):
calibration_data = list(process_vial_data(calibration, param = params[0]).values())[0]
measured_data = calibration_data["measured_data"]
coefficients = []
for i in range(len(measured_data)):
coefficients.append(calibration_data['medians'][i][0]/measured_data[i])
print(coefficients)
return create_fit(coefficients, fit_name, "constant", time.time(), params)
def three_dimension_fit(calibration, fit_name, params, graph = True):
initial_parameters = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
coefficients = []
datas = []
calibration_data = process_vial_data(calibration)
for param, param_data in calibration_data.items():
if param == params[0]:
x_datas = param_data['medians']
elif param == params[1]:
y_datas = param_data['medians']
z_datas = param_data['measured_data']
for i in range(16):
x_data = np.array(x_datas[i])
y_data = np.array(y_datas[i])
z_data = np.array(z_datas[i])
data = [x_data, y_data, z_data]
fitted_parameters, pcov = scipy.optimize.curve_fit(three_dim, [x_data, y_data], z_data, p0 = initial_parameters)
modelPredictions = three_dim(data, *fitted_parameters)
absError = modelPredictions - z_data
SE = np.square(absError) # squared errors
MSE = np.mean(SE) # mean squared errors
RMSE = np.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (np.var(absError) / np.var(z_data))
print('Vial ' + str(i))
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
print('fitted prameters', fitted_parameters)
coefficients.append(fitted_parameters.tolist())
datas.append(data)
if graph:
graph_3d_data(three_dim, datas, coefficients, fit_name)
return create_fit(coefficients, fit_name, '3d', time.time(), params)
def graph_2d_data(func, measured_data, medians, standard_deviations, coefficients, fit_name, fit_type, space_min, space_max, space_step):
linear_space = np.linspace(space_min, space_max, space_step)
fig, ax = plt.subplots(4, 4)
fig.suptitle("Fit Name: " + fit_name)
for i in range(16):
ax[i // 4, (i % 4)].plot(measured_data[i], medians[i], 'o', markersize=3, color='black')
ax[i //4, (i % 4)].errorbar(measured_data[i], medians[i], yerr=standard_deviations[i], fmt='none')
ax[i // 4, (i % 4)].plot(linear_space, func(linear_space, *coefficients[i]), markersize = 1.5, label = None)
ax[i // 4, (i % 4)].set_title('Vial: ' + str(i))
ax[i // 4, (i % 4)].ticklabel_format(style='sci', axis='y', scilimits=(0,0))
plt.subplots_adjust(hspace = 0.6)
plt.show()
def graph_3d_data(func, datas, coefficients, fit_name):
fig = plt.figure()
fig.suptitle("Fit Name: " + fit_name)
for i, data in enumerate(datas):
x_data = data[0]
y_data = data[1]
z_data = data[2]
x_space = np.linspace(min(x_data), max(x_data), 20)
y_space= np.linspace(min(y_data), max(y_data), 20)
X, Y = np.meshgrid(x_space, y_space)
Z = func(np.array([X, Y]), *coefficients[i])
ax = fig.add_subplot(4, 4, i + 1, projection = '3d')
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, linewidth=1, antialiased=True, alpha=0.5)
ax.scatter(x_data, y_data, z_data, c='r', s=10) # show data along with plotted surface
ax.set_xlabel('OD90') # X axis data label
ax.set_ylabel('OD135') # Y axis data label
ax.set_zlabel('OD Measured') # Z axis data label
plt.show()
def process_vial_data(calibration, param = None):
"""
Data is structed as a list of lists. Each element in the outer list is a vial.
That element is also a list, one for each point to be fit. The list contains 1 or more points.
This function takes the median of those points and calculates the standard deviation, returning
a similar structure.
[vial0, vial1, vial2, ... ]
vial = [point0, point1, point2, ...]
point = [replicate0, replicate1, replicate2, ...]
"""
raw_sets = calibration.get("raw", None)
if raw_sets is None:
print("Error processing calibration data - no raw sets found")
sys.exit(1)
calibration_data = {}
vial_datas = []
names = []
for raw_set in raw_sets:
if param is None or raw_set.get("param") == param:
vial_datas.append(raw_set["vialData"])
names.append(raw_set.get("param"))
for i, vial_data in enumerate(vial_datas):
medians = []
standard_deviations = []
for vial in vial_data:
point_medians = []
point_standard_deviations = []
for point in vial:
point_medians.append(np.median(point))
point_standard_deviations.append(np.std(point))
medians.append(point_medians)
standard_deviations.append(point_standard_deviations)
calibration_data[names[i]] = {"medians": medians, "standard_deviations": standard_deviations, "measured_data": calibration["measuredData"]}
return calibration_data
def create_fit(coefficients, fit_name, fit_type, time_fit, params):
return {"name": fit_name, "coefficients": coefficients, "type": fit_type, "timeFit": time_fit, "active": False, "params": params}
def start_background_loop(loop):
asyncio.set_event_loop(loop)
loop.run_forever()
def run(evolver_ip, evolver_port):
global dpu_evolver_ns
socketIO = SocketIO(evolver_ip, evolver_port)
dpu_evolver_ns = socketIO.define(EvolverNamespace, '/dpu-evolver')
socketIO.wait()
if __name__ == '__main__':
parser = optparse.OptionParser()
parser.add_option('-n', '--calibration-name', action = 'store', dest = 'calname', help = "Name of the calibration.")
parser.add_option('-g', '--get-calibration-names', action = 'store_true', dest = 'getnames', help = "Prints out all calibration names present on the eVOLVER.")
parser.add_option('-a', '--ip', action = 'store', dest = 'ipaddress', help = "IP address of eVOLVER")
parser.add_option('-t', '--fit-type', action = 'store', dest = 'fittype', help = "Valid options: sigmoid, linear, constant, 3d")
parser.add_option('-f', '--fit-name', action = 'store', dest = 'fitname', help = "Desired name for the fit.")
parser.add_option('-p', '--params', action = 'store', dest = 'params', help = "Desired parameter(s) to fit. Comma separated, no spaces")
parser.add_option('-y', '--always-yes', action = 'store_true', dest = 'alwaysyes', help = "Skips asking to save calibration to eVOLVER")
parser.add_option('-r', '--no-graph', action = 'store_true', dest = 'nograph', help = "Skips graphing if provided")
(options, args) = parser.parse_args()
cal_name = options.calname
get_names = options.getnames
fit_type = options.fittype
fit_name = options.fitname
params = options.params
always_yes = options.alwaysyes
no_graph = options.nograph
if not options.ipaddress:
print('Please specify ip address')
parser.print_help()
sys.exit(2)
ip_address = 'http://' + options.ipaddress
new_loop = asyncio.new_event_loop()
t = Thread(target = start_background_loop, args = (new_loop,))
t.daemon = True
t.start()
new_loop.call_soon_threadsafe(run, ip_address, 8081)
if dpu_evolver_ns is None:
print("Waiting for evolver connection...")
while dpu_evolver_ns is None:
pass
if get_names:
print("Getting calibration names...")
dpu_evolver_ns.emit('getcalibrationnames', [], namespace = '/dpu-evolver')
if cal_name:
if fit_name is None:
print("Please input a name for the fit!")
parser.print_help()
sys.exit(2)
if fit_type not in VALID_FIT_TYPES:
print("Invalid fit type!")
parser.print_help()
sys.exit(2)
if params is None:
print("Must provide at least 1 parameter!")
parser.print_help()
sys.exit(2)
if no_graph is None:
no_graph = False
dpu_evolver_ns.emit('getcalibration', {'name':cal_name}, namespace='/dpu-evolver')
params = params.strip().split(',')
while not data_received:
pass
if cal_name is not None and not get_names:
if fit_type == "sigmoid":
fit = sigmoid_fit(calibration, fit_name, params, graph = not no_graph)
elif fit_type == "linear":
fit = linear_fit(calibration, fit_name, params, graph = not no_graph)
elif fit_type == "constant":
fit = constant_fit(calibration, fit_name, params, graph = not no_graph)
elif fit_type == "3d":
fit = three_dimension_fit(calibration, fit_name, params, graph = not no_graph)
update_cal = 'y'
if not always_yes:
update_cal = input('Update eVOLVER with calibration? (y/n): ')
if update_cal == 'y':
dpu_evolver_ns.emit('setfitcalibration', {'name': cal_name, 'fit': fit}, namespace = '/dpu-evolver')