-
Notifications
You must be signed in to change notification settings - Fork 73
/
callbacks.py
360 lines (307 loc) · 16.3 KB
/
callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import logging
import shutil
import time
import editdistance as ed
import torchvision.utils as vutils
from fastai.callbacks.tensorboard import (LearnerTensorboardWriter,
SummaryWriter, TBWriteRequest,
asyncTBWriter)
from fastai.vision import *
from torch.nn.parallel import DistributedDataParallel
from torchvision import transforms
import dataset
from utils import CharsetMapper, Timer, blend_mask
class IterationCallback(LearnerTensorboardWriter):
"A `TrackerCallback` that monitor in each iteration."
def __init__(self, learn:Learner, name:str='model', checpoint_keep_num=5,
show_iters:int=50, eval_iters:int=1000, save_iters:int=20000,
start_iters:int=0, stats_iters=20000):
#if self.learn.rank is not None: time.sleep(self.learn.rank) # keep all event files
super().__init__(learn, base_dir='.', name=learn.path, loss_iters=show_iters,
stats_iters=stats_iters, hist_iters=stats_iters)
self.name, self.bestname = Path(name).name, f'best-{Path(name).name}'
self.show_iters = show_iters
self.eval_iters = eval_iters
self.save_iters = save_iters
self.start_iters = start_iters
self.checpoint_keep_num = checpoint_keep_num
self.metrics_root = 'metrics/' # rewrite
self.timer = Timer()
self.host = self.learn.rank is None or self.learn.rank == 0
def _write_metrics(self, iteration:int, names:List[str], last_metrics:MetricsList)->None:
"Writes training metrics to Tensorboard."
for i, name in enumerate(names):
if last_metrics is None or len(last_metrics) < i+1: return
scalar_value = last_metrics[i]
self._write_scalar(name=name, scalar_value=scalar_value, iteration=iteration)
def _write_sub_loss(self, iteration:int, last_losses:dict)->None:
"Writes sub loss to Tensorboard."
for name, loss in last_losses.items():
scalar_value = to_np(loss)
tag = self.metrics_root + name
self.tbwriter.add_scalar(tag=tag, scalar_value=scalar_value, global_step=iteration)
def _save(self, name):
if isinstance(self.learn.model, DistributedDataParallel):
tmp = self.learn.model
self.learn.model = self.learn.model.module
self.learn.save(name)
self.learn.model = tmp
else: self.learn.save(name)
def _validate(self, dl=None, callbacks=None, metrics=None, keeped_items=False):
"Validate on `dl` with potential `callbacks` and `metrics`."
dl = ifnone(dl, self.learn.data.valid_dl)
metrics = ifnone(metrics, self.learn.metrics)
cb_handler = CallbackHandler(ifnone(callbacks, []), metrics)
cb_handler.on_train_begin(1, None, metrics); cb_handler.on_epoch_begin()
if keeped_items: cb_handler.state_dict.update(dict(keeped_items=[]))
val_metrics = validate(self.learn.model, dl, self.loss_func, cb_handler)
cb_handler.on_epoch_end(val_metrics)
if keeped_items: return cb_handler.state_dict['keeped_items']
else: return cb_handler.state_dict['last_metrics']
def jump_to_epoch_iter(self, epoch:int, iteration:int)->None:
try:
self.learn.load(f'{self.name}_{epoch}_{iteration}', purge=False)
logging.info(f'Loaded {self.name}_{epoch}_{iteration}')
except: logging.info(f'Model {self.name}_{epoch}_{iteration} not found.')
def on_train_begin(self, n_epochs, **kwargs):
# TODO: can not write graph here
# super().on_train_begin(**kwargs)
self.best = -float('inf')
self.timer.tic()
if self.host:
checkpoint_path = self.learn.path/'checkpoint.yaml'
if checkpoint_path.exists():
os.remove(checkpoint_path)
open(checkpoint_path, 'w').close()
return {'skip_validate': True, 'iteration':self.start_iters} # disable default validate
def on_batch_begin(self, **kwargs:Any)->None:
self.timer.toc_data()
super().on_batch_begin(**kwargs)
def on_batch_end(self, iteration, epoch, last_loss, smooth_loss, train, **kwargs):
super().on_batch_end(last_loss, iteration, train, **kwargs)
if iteration == 0: return
if iteration % self.loss_iters == 0:
last_losses = self.learn.loss_func.last_losses
self._write_sub_loss(iteration=iteration, last_losses=last_losses)
self.tbwriter.add_scalar(tag=self.metrics_root + 'lr',
scalar_value=self.opt.lr, global_step=iteration)
if iteration % self.show_iters == 0:
log_str = f'epoch {epoch} iter {iteration}: loss = {last_loss:6.4f}, ' \
f'smooth loss = {smooth_loss:6.4f}'
logging.info(log_str)
# log_str = f'data time = {self.timer.data_diff:.4f}s, runing time = {self.timer.running_diff:.4f}s'
# logging.info(log_str)
if iteration % self.eval_iters == 0:
# TODO: or remove time to on_epoch_end
# 1. Record time
log_str = f'average data time = {self.timer.average_data_time():.4f}s, ' \
f'average running time = {self.timer.average_running_time():.4f}s'
logging.info(log_str)
# 2. Call validate
last_metrics = self._validate()
self.learn.model.train()
log_str = f'epoch {epoch} iter {iteration}: eval loss = {last_metrics[0]:6.4f}, ' \
f'ccr = {last_metrics[1]:6.4f}, cwr = {last_metrics[2]:6.4f}, ' \
f'ted = {last_metrics[3]:6.4f}, ned = {last_metrics[4]:6.4f}, ' \
f'ted/w = {last_metrics[5]:6.4f}, '
logging.info(log_str)
names = ['eval_loss', 'ccr', 'cwr', 'ted', 'ned', 'ted/w']
self._write_metrics(iteration, names, last_metrics)
# 3. Save best model
current = last_metrics[2]
if current is not None and current > self.best:
logging.info(f'Better model found at epoch {epoch}, '\
f'iter {iteration} with accuracy value: {current:6.4f}.')
self.best = current
self._save(f'{self.bestname}')
if iteration % self.save_iters == 0 and self.host:
logging.info(f'Save model {self.name}_{epoch}_{iteration}')
filename = f'{self.name}_{epoch}_{iteration}'
self._save(filename)
checkpoint_path = self.learn.path/'checkpoint.yaml'
if not checkpoint_path.exists():
open(checkpoint_path, 'w').close()
with open(checkpoint_path, 'r') as file:
checkpoints = yaml.load(file, Loader=yaml.FullLoader) or dict()
checkpoints['all_checkpoints'] = (
checkpoints.get('all_checkpoints') or list())
checkpoints['all_checkpoints'].insert(0, filename)
if len(checkpoints['all_checkpoints']) > self.checpoint_keep_num:
removed_checkpoint = checkpoints['all_checkpoints'].pop()
removed_checkpoint = self.learn.path/self.learn.model_dir/f'{removed_checkpoint}.pth'
os.remove(removed_checkpoint)
checkpoints['current_checkpoint'] = filename
with open(checkpoint_path, 'w') as file:
yaml.dump(checkpoints, file)
self.timer.toc_running()
def on_train_end(self, **kwargs):
#self.learn.load(f'{self.bestname}', purge=False)
pass
def on_epoch_end(self, last_metrics:MetricsList, iteration:int, **kwargs)->None:
self._write_embedding(iteration=iteration)
class TextAccuracy(Callback):
_names = ['ccr', 'cwr', 'ted', 'ned', 'ted/w']
def __init__(self, charset_path, max_length, case_sensitive, model_eval):
self.charset_path = charset_path
self.max_length = max_length
self.case_sensitive = case_sensitive
self.charset = CharsetMapper(charset_path, self.max_length)
self.names = self._names
self.model_eval = model_eval or 'alignment'
assert self.model_eval in ['vision', 'language', 'alignment']
def on_epoch_begin(self, **kwargs):
self.total_num_char = 0.
self.total_num_word = 0.
self.correct_num_char = 0.
self.correct_num_word = 0.
self.total_ed = 0.
self.total_ned = 0.
def _get_output(self, last_output):
if isinstance(last_output, (tuple, list)):
for res in last_output:
if res['name'] == self.model_eval: output = res
else: output = last_output
return output
def _update_output(self, last_output, items):
if isinstance(last_output, (tuple, list)):
for res in last_output:
if res['name'] == self.model_eval: res.update(items)
else: last_output.update(items)
return last_output
def on_batch_end(self, last_output, last_target, **kwargs):
output = self._get_output(last_output)
logits, pt_lengths = output['logits'], output['pt_lengths']
pt_text, pt_scores, pt_lengths_ = self.decode(logits)
assert (pt_lengths == pt_lengths_).all(), f'{pt_lengths} != {pt_lengths_} for {pt_text}'
last_output = self._update_output(last_output, {'pt_text':pt_text, 'pt_scores':pt_scores})
pt_text = [self.charset.trim(t) for t in pt_text]
label = last_target[0]
if label.dim() == 3: label = label.argmax(dim=-1) # one-hot label
gt_text = [self.charset.get_text(l, trim=True) for l in label]
for i in range(len(gt_text)):
if not self.case_sensitive:
gt_text[i], pt_text[i] = gt_text[i].lower(), pt_text[i].lower()
distance = ed.eval(gt_text[i], pt_text[i])
self.total_ed += distance
self.total_ned += float(distance) / max(len(gt_text[i]), 1)
if gt_text[i] == pt_text[i]:
self.correct_num_word += 1
self.total_num_word += 1
for j in range(min(len(gt_text[i]), len(pt_text[i]))):
if gt_text[i][j] == pt_text[i][j]:
self.correct_num_char += 1
self.total_num_char += len(gt_text[i])
return {'last_output': last_output}
def on_epoch_end(self, last_metrics, **kwargs):
mets = [self.correct_num_char / self.total_num_char,
self.correct_num_word / self.total_num_word,
self.total_ed,
self.total_ned,
self.total_ed / self.total_num_word]
return add_metrics(last_metrics, mets)
def decode(self, logit):
""" Greed decode """
# TODO: test running time and decode on GPU
out = F.softmax(logit, dim=2)
pt_text, pt_scores, pt_lengths = [], [], []
for o in out:
text = self.charset.get_text(o.argmax(dim=1), padding=False, trim=False)
text = text.split(self.charset.null_char)[0] # end at end-token
pt_text.append(text)
pt_scores.append(o.max(dim=1)[0])
pt_lengths.append(min(len(text) + 1, self.max_length)) # one for end-token
pt_scores = torch.stack(pt_scores)
pt_lengths = pt_scores.new_tensor(pt_lengths, dtype=torch.long)
return pt_text, pt_scores, pt_lengths
class TopKTextAccuracy(TextAccuracy):
_names = ['ccr', 'cwr']
def __init__(self, k, charset_path, max_length, case_sensitive, model_eval):
self.k = k
self.charset_path = charset_path
self.max_length = max_length
self.case_sensitive = case_sensitive
self.charset = CharsetMapper(charset_path, self.max_length)
self.names = self._names
def on_epoch_begin(self, **kwargs):
self.total_num_char = 0.
self.total_num_word = 0.
self.correct_num_char = 0.
self.correct_num_word = 0.
def on_batch_end(self, last_output, last_target, **kwargs):
logits, pt_lengths = last_output['logits'], last_output['pt_lengths']
gt_labels, gt_lengths = last_target[:]
for logit, pt_length, label, length in zip(logits, pt_lengths, gt_labels, gt_lengths):
word_flag = True
for i in range(length):
char_logit = logit[i].topk(self.k)[1]
char_label = label[i].argmax(-1)
if char_label in char_logit: self.correct_num_char += 1
else: word_flag = False
self.total_num_char += 1
if pt_length == length and word_flag:
self.correct_num_word += 1
self.total_num_word += 1
def on_epoch_end(self, last_metrics, **kwargs):
mets = [self.correct_num_char / self.total_num_char,
self.correct_num_word / self.total_num_word,
0., 0., 0.]
return add_metrics(last_metrics, mets)
class DumpPrediction(LearnerCallback):
def __init__(self, learn, dataset, charset_path, model_eval, image_only=False, debug=False):
super().__init__(learn=learn)
self.debug = debug
self.model_eval = model_eval or 'alignment'
self.image_only = image_only
assert self.model_eval in ['vision', 'language', 'alignment']
self.dataset, self.root = dataset, Path(self.learn.path)/f'{dataset}-{self.model_eval}'
self.attn_root = self.root/'attn'
self.charset = CharsetMapper(charset_path)
if self.root.exists(): shutil.rmtree(self.root)
self.root.mkdir(), self.attn_root.mkdir()
self.pil = transforms.ToPILImage()
self.tensor = transforms.ToTensor()
size = self.learn.data.img_h, self.learn.data.img_w
self.resize = transforms.Resize(size=size, interpolation=0)
self.c = 0
def on_batch_end(self, last_input, last_output, last_target, **kwargs):
if isinstance(last_output, (tuple, list)):
for res in last_output:
if res['name'] == self.model_eval: pt_text = res['pt_text']
if res['name'] == 'vision': attn_scores = res['attn_scores'].detach().cpu()
if res['name'] == self.model_eval: logits = res['logits']
else:
pt_text = last_output['pt_text']
attn_scores = last_output['attn_scores'].detach().cpu()
logits = last_output['logits']
images = last_input[0] if isinstance(last_input, (tuple, list)) else last_input
images = images.detach().cpu()
pt_text = [self.charset.trim(t) for t in pt_text]
gt_label = last_target[0]
if gt_label.dim() == 3: gt_label = gt_label.argmax(dim=-1) # one-hot label
gt_text = [self.charset.get_text(l, trim=True) for l in gt_label]
prediction, false_prediction = [], []
for gt, pt, image, attn, logit in zip(gt_text, pt_text, images, attn_scores, logits):
prediction.append(f'{gt}\t{pt}\n')
if gt != pt:
if self.debug:
scores = torch.softmax(logit, dim=-1)[:max(len(pt), len(gt)) + 1]
logging.info(f'{self.c} gt {gt}, pt {pt}, logit {logit.shape}, scores {scores.topk(5, dim=-1)}')
false_prediction.append(f'{gt}\t{pt}\n')
image = self.learn.data.denorm(image)
if not self.image_only:
image_np = np.array(self.pil(image))
attn_pil = [self.pil(a) for a in attn[:, None, :, :]]
attn = [self.tensor(self.resize(a)).repeat(3, 1, 1) for a in attn_pil]
attn_sum = np.array([np.array(a) for a in attn_pil[:len(pt)]]).sum(axis=0)
blended_sum = self.tensor(blend_mask(image_np, attn_sum))
blended = [self.tensor(blend_mask(image_np, np.array(a))) for a in attn_pil]
save_image = torch.stack([image] + attn + [blended_sum] + blended)
save_image = save_image.view(2, -1, *save_image.shape[1:])
save_image = save_image.permute(1, 0, 2, 3, 4).flatten(0, 1)
vutils.save_image(save_image, self.attn_root/f'{self.c}_{gt}_{pt}.jpg',
nrow=2, normalize=True, scale_each=True)
else:
self.pil(image).save(self.attn_root/f'{self.c}_{gt}_{pt}.jpg')
self.c += 1
with open(self.root/f'{self.model_eval}.txt', 'a') as f: f.writelines(prediction)
with open(self.root/f'{self.model_eval}-false.txt', 'a') as f: f.writelines(false_prediction)