forked from ggerganov/whisper.cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
unicode.cpp
808 lines (710 loc) · 29.6 KB
/
unicode.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
#include "unicode.h"
#include "unicode-data.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <regex>
#include <stdexcept>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include <locale>
#include <codecvt>
static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) {
std::string result;
for (size_t i = 0; i < cps.size(); ++i) {
result.append(unicode_cpt_to_utf8(cps[i]));
}
return result;
}
uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) {
assert(offset < utf8.size());
if (!(utf8[offset + 0] & 0x80)) {
auto result = utf8[offset + 0];
offset += 1;
return result;
}
if (!(utf8[offset + 0] & 0x40)) {
throw std::invalid_argument("invalid character");
}
if (!(utf8[offset + 0] & 0x20)) {
if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80)) {
throw std::invalid_argument("invalid character");
}
auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f);
offset += 2;
return result;
}
if (!(utf8[offset + 0] & 0x10)) {
if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80)) {
throw std::invalid_argument("invalid character");
}
auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f);
offset += 3;
return result;
}
if (!(utf8[offset + 0] & 0x08)) {
if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80)) {
throw std::invalid_argument("invalid character");
}
auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f);
offset += 4;
return result;
}
throw std::invalid_argument("failed to convert utf8 to codepoint");
}
//static std::vector<uint16_t> unicode_cpt_to_utf16(uint32_t cp) {
// std::vector<uint16_t> result;
// if (/* 0x0000 <= cp && */ cp <= 0xffff) {
// result.emplace_back(cp);
// return result;
// }
// if (0x10000 <= cp && cp <= 0x10ffff) {
// result.emplace_back(0xd800 | ((cp - 0x10000) >> 10));
// result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff));
// return result;
// }
// throw std::invalid_argument("failed to convert codepoint to utf16");
//}
//static std::vector<uint16_t> unicode_cpts_to_utf16(const std::vector<uint32_t> & cps) {
// std::vector<uint16_t> result;
// for (size_t i = 0; i < cps.size(); ++i) {
// auto temp = unicode_cpt_to_utf16(cps[i]);
// result.insert(result.end(), temp.begin(), temp.end());
// }
// return result;
//}
//static uint32_t unicode_cpt_from_utf16(const std::vector<uint16_t> & utf16, size_t & offset) {
// assert(offset < utf16.size());
// if (((utf16[0] >> 10) << 10) != 0xd800) {
// auto result = utf16[offset + 0];
// offset += 1;
// return result;
// }
//
// if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00)) {
// throw std::invalid_argument("invalid character");
// }
//
// auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff));
// offset += 2;
// return result;
//}
//static std::vector<uint32_t> unicode_cpts_from_utf16(const std::vector<uint16_t> & utf16) {
// std::vector<uint32_t> result;
// size_t offset = 0;
// while (offset < utf16.size()) {
// result.push_back(unicode_cpt_from_utf16(utf16, offset));
// }
// return result;
//}
static std::vector<codepoint_flags> unicode_cpt_flags_array() {
std::vector<codepoint_flags> cpt_flags(MAX_CODEPOINTS, codepoint_flags::UNDEFINED);
assert (unicode_ranges_flags.front().first == 0);
assert (unicode_ranges_flags.back().first == MAX_CODEPOINTS);
for (size_t i = 1; i < unicode_ranges_flags.size(); ++i) {
const auto range_ini = unicode_ranges_flags[i-1]; // codepoint_ini, flags
const auto range_end = unicode_ranges_flags[i]; // codepoint_end, flags
for (uint32_t cpt = range_ini.first; cpt < range_end.first; ++cpt) {
cpt_flags[cpt] = range_ini.second;
}
}
for (auto cpt : unicode_set_whitespace) {
cpt_flags[cpt].is_whitespace = true;
}
for (auto p : unicode_map_lowercase) {
cpt_flags[p.second].is_lowercase = true;
}
for (auto p : unicode_map_uppercase) {
cpt_flags[p.second].is_uppercase = true;
}
for (auto &range : unicode_ranges_nfd) { // start, last, nfd
cpt_flags[range.nfd].is_nfd = true;
}
return cpt_flags;
}
static std::unordered_map<uint8_t, std::string> unicode_byte_to_utf8_map() {
std::unordered_map<uint8_t, std::string> map;
for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
assert(0 <= ch && ch < 256);
map[ch] = unicode_cpt_to_utf8(ch);
}
for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
assert(0 <= ch && ch < 256);
map[ch] = unicode_cpt_to_utf8(ch);
}
for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
assert(0 <= ch && ch < 256);
map[ch] = unicode_cpt_to_utf8(ch);
}
auto n = 0;
for (int ch = 0; ch < 256; ++ch) {
if (map.find(ch) == map.end()) {
map[ch] = unicode_cpt_to_utf8(256 + n);
++n;
}
}
return map;
}
static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() {
std::unordered_map<std::string, uint8_t> map;
for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~'
assert(0 <= ch && ch < 256);
map[unicode_cpt_to_utf8(ch)] = ch;
}
for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬'
assert(0 <= ch && ch < 256);
map[unicode_cpt_to_utf8(ch)] = ch;
}
for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ'
assert(0 <= ch && ch < 256);
map[unicode_cpt_to_utf8(ch)] = ch;
}
auto n = 0;
for (int ch = 0; ch < 256; ++ch) {
if (map.find(unicode_cpt_to_utf8(ch)) == map.end()) {
map[unicode_cpt_to_utf8(256 + n)] = ch;
++n;
}
}
return map;
}
static inline std::wstring unicode_wstring_from_utf8(const std::string & s) {
std::wstring_convert<std::codecvt_utf8<wchar_t>> conv;
return conv.from_bytes(s);
}
static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) {
std::vector<std::string> bpe_encoded_words;
for (const auto & word : bpe_words) {
std::string text_utf;
auto utf_word = unicode_cpts_from_utf8(word);
for (size_t i = 0; i < utf_word.size(); ++i) {
text_utf += unicode_cpt_to_utf8(utf_word[i]);
}
std::string encoded_token;
for (char & c : text_utf) {
encoded_token += unicode_byte_to_utf8(c);
}
bpe_encoded_words.emplace_back(encoded_token);
}
return bpe_encoded_words;
}
// GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & text, const std::vector<size_t> & offsets) {
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
const auto cpts = unicode_cpts_from_utf8(text);
size_t start = 0;
for (auto offset : offsets) {
const size_t offset_ini = start;
const size_t offset_end = start + offset;
assert(offset_end <= cpts.size());
start = offset_end;
static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
};
auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
};
size_t _prev_end = offset_ini;
auto _add_token = [&] (const size_t end) -> size_t {
assert(_prev_end <= end && end <= offset_end);
size_t len = end - _prev_end;
if (len > 0) {
bpe_offsets.push_back(len);
}
_prev_end = end;
//if (len > 0) {
// std::string s = "";
// for(size_t p = end-len; p < end; p++)
// s += unicode_cpt_to_utf8(cpts[p]);
// printf(">>> '%s'\n", s.c_str());
//}
return len;
};
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
const uint32_t cpt = _get_cpt(pos);
const auto flags = _get_flags(pos);
// regex: 's|'t|'re|'ve|'m|'ll|'d
if (cpt == '\'' && pos+1 < offset_end) {
uint32_t cpt_next = _get_cpt(pos+1);
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
pos += _add_token(pos+2);
continue;
}
if (pos+2 < offset_end) {
uint32_t cpt_next_next = _get_cpt(pos+2);
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
(cpt_next == 'v' && cpt_next_next == 'e') ||
(cpt_next == 'l' && cpt_next_next == 'l')) {
pos += _add_token(pos+3);
continue;
}
}
}
auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
// regex: <space>?\p{L}+
if (flags2.is_letter) {
pos += (cpt == ' ');
while (flags2.is_letter) {
flags2 = _get_flags(++pos);
}
_add_token(pos);
continue;
}
// regex: <space>?\p{N}+
if (flags2.is_number) {
pos += (cpt == ' ');
while (flags2.is_number) {
flags2 = _get_flags(++pos);
}
_add_token(pos);
continue;
}
// regex: <space>?[^\s\p{L}\p{N}]+
if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
pos += (cpt == ' ');
while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
flags2 = _get_flags(++pos);
}
_add_token(pos);
continue;
}
size_t num_whitespaces = 0;
while (_get_flags(pos+num_whitespaces).is_whitespace) {
num_whitespaces++;
}
// regex: \s+(?!\S)
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
pos += num_whitespaces - 1;
_add_token(pos);
continue;
}
// regex: \s+
if (num_whitespaces > 0) {
pos += num_whitespaces;
_add_token(pos);
continue;
}
// no matches
_add_token(++pos);
}
}
return bpe_offsets;
}
// LLAMA3 system regex: "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"
static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & text, const std::vector<size_t> & offsets) {
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
const auto cpts = unicode_cpts_from_utf8(text);
size_t start = 0;
for (auto offset : offsets) {
const size_t offset_ini = start;
const size_t offset_end = start + offset;
assert(offset_end <= cpts.size());
start = offset_end;
static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF;
auto _get_cpt = [&] (const size_t pos) -> uint32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE;
};
auto _get_flags = [&] (const size_t pos) -> codepoint_flags {
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{};
};
size_t _prev_end = offset_ini;
auto _add_token = [&] (const size_t end) -> size_t {
assert(_prev_end <= end && end <= offset_end);
size_t len = end - _prev_end;
if (len > 0) {
bpe_offsets.push_back(len);
}
_prev_end = end;
//if (len > 0) {
// std::string s = "";
// for(size_t p = end-len; p < end; p++)
// s += unicode_cpt_to_utf8(cpts[p]);
// printf(">>> '%s'\n", s.c_str());
//}
return len;
};
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
const uint32_t cpt = _get_cpt(pos);
const auto flags = _get_flags(pos);
// regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive
if (cpt == '\'' && pos+1 < offset_end) {
uint32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
pos += _add_token(pos+2);
continue;
}
if (pos+2 < offset_end) {
uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
(cpt_next == 'v' && cpt_next_next == 'e') ||
(cpt_next == 'l' && cpt_next_next == 'l')) {
pos += _add_token(pos+3);
continue;
}
}
}
// regex: [^\r\n\p{L}\p{N}]?\p{L}+
if (!(cpt == '\r' || cpt == '\n' || flags.is_number)) {
if (flags.is_letter || _get_flags(pos+1).is_letter) { // one or more letters
pos++;
while (_get_flags(pos).is_letter) {
pos++;
}
_add_token(pos);
continue;
}
}
// regex: \p{N}{1,3}
if (flags.is_number) {
size_t ini = pos;
while (_get_flags(pos).is_number) {
if (++pos - ini >= 3 ) {
_add_token(pos);
ini = pos;
}
}
_add_token(pos);
continue;
}
// regex: <space>?[^\s\p{L}\p{N}]+[\r\n]*
auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags);
if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags.as_uint()) {
pos += (cpt == ' ');
while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) {
flags2 = _get_flags(++pos);
}
uint32_t cpt2 = _get_cpt(pos);
while (cpt2 == '\r' || cpt2 == '\n') {
cpt2 = _get_cpt(++pos);
}
_add_token(pos);
continue;
}
size_t num_whitespaces = 0;
size_t last_end_r_or_n = 0;
while (_get_flags(pos+num_whitespaces).is_whitespace) {
uint32_t cpt2 = _get_cpt(pos+num_whitespaces);
if (cpt2 == '\r' || cpt2 == '\n') {
last_end_r_or_n = pos + num_whitespaces + 1;
}
num_whitespaces++;
}
// regex: \s*[\r\n]+
if (last_end_r_or_n > 0) {
pos = last_end_r_or_n;
_add_token(pos);
continue;
}
// regex: \s+(?!\S)
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) {
pos += num_whitespaces - 1;
_add_token(pos);
continue;
}
// regex: \s+
if (num_whitespaces > 0) {
pos += num_whitespaces;
_add_token(pos);
continue;
}
// no matches
_add_token(++pos);
}
}
return bpe_offsets;
}
// use std::wregex to split the text
static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector<size_t> & offsets) {
std::wregex expr(regex_expr);
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
size_t start = 0;
for (auto offset : offsets) {
std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr);
std::wcregex_iterator end;
int64_t start_idx = 0;
while (it != end) {
std::wcmatch match = *it;
if (match.position() > start_idx) {
bpe_offsets.emplace_back(match.position() - start_idx);
}
bpe_offsets.emplace_back(match.length());
start_idx = match.position() + match.length();
++it;
}
if (start_idx < (int64_t) offset) {
bpe_offsets.emplace_back(offset - start_idx);
}
start += offset;
}
return bpe_offsets;
}
// use std::regex to split the text
static std::vector<size_t> unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
std::regex expr(regex_expr);
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
size_t start = 0;
for (auto offset : offsets) {
std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr);
std::cregex_iterator end;
int64_t start_idx = 0;
while (it != end) {
std::cmatch match = *it;
if (match.position() > start_idx) {
bpe_offsets.emplace_back(match.position() - start_idx);
}
bpe_offsets.emplace_back(match.length());
start_idx = match.position() + match.length();
++it;
}
if (start_idx < (int64_t) offset) {
bpe_offsets.emplace_back(offset - start_idx);
}
start += offset;
}
return bpe_offsets;
}
static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
std::vector<size_t> bpe_offsets;
if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") {
bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets);
} else if (
regex_expr == "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" ||
regex_expr == "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+") {
bpe_offsets = unicode_regex_split_custom_llama3(text, offsets);
}
return bpe_offsets;
}
//
// interface
//
std::string unicode_cpt_to_utf8(uint32_t cp) {
std::string result;
if (/* 0x00 <= cp && */ cp <= 0x7f) {
result.push_back(cp);
return result;
}
if (0x80 <= cp && cp <= 0x7ff) {
result.push_back(0xc0 | ((cp >> 6) & 0x1f));
result.push_back(0x80 | (cp & 0x3f));
return result;
}
if (0x800 <= cp && cp <= 0xffff) {
result.push_back(0xe0 | ((cp >> 12) & 0x0f));
result.push_back(0x80 | ((cp >> 6) & 0x3f));
result.push_back(0x80 | (cp & 0x3f));
return result;
}
if (0x10000 <= cp && cp <= 0x10ffff) {
result.push_back(0xf0 | ((cp >> 18) & 0x07));
result.push_back(0x80 | ((cp >> 12) & 0x3f));
result.push_back(0x80 | ((cp >> 6) & 0x3f));
result.push_back(0x80 | (cp & 0x3f));
return result;
}
throw std::invalid_argument("invalid codepoint");
}
std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts) {
auto comp = [] (const uint32_t cpt, const range_nfd & range) {
return cpt < range.first;
};
std::vector<uint32_t> result(cpts.size());
for (size_t i = 0; i < cpts.size(); ++i) {
const uint32_t cpt = cpts[i];
auto it = std::upper_bound(unicode_ranges_nfd.cbegin(), unicode_ranges_nfd.cend(), cpt, comp) - 1;
result[i] = (it->first <= cpt && cpt <= it->last) ? it->nfd : cpt;
}
return result;
}
std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) {
std::vector<uint32_t> result;
result.reserve(utf8.size());
size_t offset = 0;
while (offset < utf8.size()) {
result.push_back(unicode_cpt_from_utf8(utf8, offset));
}
return result;
}
codepoint_flags unicode_cpt_flags(const uint32_t cp) {
static const codepoint_flags undef(codepoint_flags::UNDEFINED);
static const auto cpt_flags = unicode_cpt_flags_array();
return cp < cpt_flags.size() ? cpt_flags[cp] : undef;
}
codepoint_flags unicode_cpt_flags(const std::string & utf8) {
static const codepoint_flags undef(codepoint_flags::UNDEFINED);
if (utf8.empty()) {
return undef; // undefined
}
size_t offset = 0;
return unicode_cpt_flags(unicode_cpt_from_utf8(utf8, offset));
}
std::string unicode_byte_to_utf8(uint8_t byte) {
static std::unordered_map<uint8_t, std::string> map = unicode_byte_to_utf8_map();
return map.at(byte);
}
uint8_t unicode_utf8_to_byte(const std::string & utf8) {
static std::unordered_map<std::string, uint8_t> map = unicode_utf8_to_byte_map();
return map.at(utf8);
}
uint32_t unicode_tolower(uint32_t cp) {
auto it = unicode_map_lowercase.find(cp);
return it == unicode_map_lowercase.end() ? cp : it->second;
}
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) {
// unicode categories
static const std::map<std::string, int> k_ucat_enum = {
{ "\\p{N}", codepoint_flags::NUMBER },
{ "\\p{L}", codepoint_flags::LETTER },
{ "\\p{P}", codepoint_flags::PUNCTUATION },
};
static const std::map<int, int> k_ucat_cpt = {
{ codepoint_flags::NUMBER, 0xD1 },
{ codepoint_flags::LETTER, 0xD2 },
{ codepoint_flags::PUNCTUATION, 0xD3 },
};
static const std::map<int, std::string> k_ucat_map = {
{ codepoint_flags::NUMBER, "\x30-\x39" }, // 0-9
{ codepoint_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z
{ codepoint_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\}
};
// compute collapsed codepoints only if needed by at least one regex
bool need_collapse = false;
for (auto & regex_expr : regex_exprs) {
// search for unicode categories
for (const auto & ucat : k_ucat_enum) {
if (std::string::npos != regex_expr.find(ucat.first)) {
need_collapse = true;
break;
}
}
}
const auto cpts = unicode_cpts_from_utf8(text);
// generate a "collapsed" representation of the text, where all codepoints are replaced by a single byte
// ref: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2081479935
std::string text_collapsed;
if (need_collapse) {
// collapse all unicode categories
text_collapsed.resize(cpts.size());
for (size_t i = 0; i < cpts.size(); ++i) {
// keep single-byte codepoints as is
if (cpts[i] < 128) {
text_collapsed[i] = cpts[i];
continue;
}
const auto flags = unicode_cpt_flags(cpts[i]);
if (flags.is_whitespace) {
//NOTE: C++ std::regex \s does not mach 0x85, Rust and Python regex does.
//text_collapsed[i] = (char) 0x85; // <Next Line> as whitespace fallback
text_collapsed[i] = (char) 0x0B; // <vertical tab> as whitespace fallback
} else if (k_ucat_cpt.find(flags.category_flag()) != k_ucat_cpt.end()) {
text_collapsed[i] = k_ucat_cpt.at(flags.category_flag());
} else {
text_collapsed[i] = (char) 0xD0; // fallback
}
}
}
std::vector<size_t> bpe_offsets = { cpts.size() };
for (auto & regex_expr : regex_exprs) {
// first, see if we have an efficient custom regex implementation
auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets);
if (!tmp.empty()) {
bpe_offsets = std::move(tmp);
continue;
}
// fallback to general-purpose std::regex / std::wregex
try {
// if a unicode category is used in the regex, we use the collapsed text and replace the unicode category
// with the corresponding collapsed representation
bool use_collapsed = false;
for (auto & ucat : k_ucat_enum) {
if (std::string::npos != regex_expr.find(ucat.first)) {
use_collapsed = true;
break;
}
}
if (use_collapsed) {
// sanity-check that the original regex does not contain any non-ASCII characters
const auto cpts_regex = unicode_cpts_from_utf8(regex_expr);
for (size_t i = 0; i < cpts_regex.size(); ++i) {
if (cpts_regex[i] >= 128) {
throw std::runtime_error("Regex includes both unicode categories and non-ASCII characters - not supported");
}
}
// generate a collapsed representation of the regex
std::string regex_expr_collapsed;
// track if we are inside [], because nested [] are not allowed
bool inside = false;
for (size_t i = 0; i < regex_expr.size(); ++i) {
if (regex_expr[i] == '[' && (i == 0 || regex_expr[i - 1] != '\\')) {
regex_expr_collapsed += '[';
inside = true;
continue;
}
if (inside && regex_expr[i] == ']' && regex_expr[i - 1] != '\\') {
regex_expr_collapsed += ']';
inside = false;
continue;
}
if (regex_expr[i + 0] == '\\' && i + 4 < regex_expr.size() &&
regex_expr[i + 1] == 'p' &&
regex_expr[i + 2] == '{' &&
regex_expr[i + 4] == '}') {
const std::string pat = regex_expr.substr(i, 5);
if (k_ucat_enum.find(pat) != k_ucat_enum.end()) {
if (!inside) {
regex_expr_collapsed += '[';
}
regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat));
regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat));
if (!inside) {
regex_expr_collapsed += ']';
}
i += 4;
continue;
}
}
regex_expr_collapsed += regex_expr[i];
}
//printf("text_collapsed: %s\n", text_collapsed.c_str());
//printf("regex_expr_collapsed: %s\n", regex_expr_collapsed.c_str());
bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets);
} else {
// no unicode category used, we can use std::wregex directly
const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr);
// std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback
std::wstring wtext(cpts.begin(), cpts.end());
for (size_t i = 0; i < wtext.size(); ++i) {
if (wtext[i] > 0x7F && unicode_cpt_flags(wtext[i]).is_whitespace) {
wtext[i] = 0x0B;
}
}
//printf("text: %s\n", text.c_str());
//printf("regex_expr: %s\n", regex_expr.c_str());
bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets);
}
} catch (std::regex_error & e) {
fprintf(stderr, "Failed to process regex: '%s'\n", regex_expr.c_str());
fprintf(stderr, "Regex error: %s\n", e.what());
throw std::runtime_error("Failed to process regex");
}
}
std::vector<std::string> bpe_words;
bpe_words.reserve(bpe_offsets.size()); // reserve memory for the approximate size
size_t start = 0;
for (size_t & offset : bpe_offsets) {
bpe_words.emplace_back();
for (size_t i = start; i < start + offset; ++i) {
bpe_words.back() += unicode_cpt_to_utf8(cpts[i]);
}
start += offset;
}
return unicode_byte_encoding_process(bpe_words);
}