forked from progschj/OpenGL-Examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
08map_buffer.cpp
394 lines (325 loc) · 11.8 KB
/
08map_buffer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/* OpenGL example code - buffer mapping
*
* This example uses the geometry shader again for particle drawing.
* The particles are animated on the cpu and uploaded every frame by
* mapping vbos. Multiple vbos are used to triple buffer the particle
* data.
*
* Autor: Jakob Progsch
*/
/* index
* line 215: initialize particles
* line 320: vbo mapping
* line 359: draw call
*/
#include <GL3/gl3w.h>
#include <GL/glfw.h>
//glm is used to create perspective and transform matrices
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include <iostream>
#include <string>
#include <vector>
#include <cstdlib>
#include <cmath>
bool running;
// window close callback function
int closedWindow()
{
running = false;
return GL_TRUE;
}
// helper to check and display for shader compiler errors
bool check_shader_compile_status(GLuint obj)
{
GLint status;
glGetShaderiv(obj, GL_COMPILE_STATUS, &status);
if(status == GL_FALSE)
{
GLint length;
glGetShaderiv(obj, GL_INFO_LOG_LENGTH, &length);
std::vector<char> log(length);
glGetShaderInfoLog(obj, length, &length, &log[0]);
std::cerr << &log[0];
return false;
}
return true;
}
// helper to check and display for shader linker error
bool check_program_link_status(GLuint obj)
{
GLint status;
glGetProgramiv(obj, GL_LINK_STATUS, &status);
if(status == GL_FALSE)
{
GLint length;
glGetProgramiv(obj, GL_INFO_LOG_LENGTH, &length);
std::vector<char> log(length);
glGetProgramInfoLog(obj, length, &length, &log[0]);
std::cerr << &log[0];
return false;
}
return true;
}
int main()
{
int width = 640;
int height = 480;
if(glfwInit() == GL_FALSE)
{
std::cerr << "failed to init GLFW" << std::endl;
return 1;
}
// select opengl version
glfwOpenWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwOpenWindowHint(GLFW_OPENGL_VERSION_MAJOR, 3);
glfwOpenWindowHint(GLFW_OPENGL_VERSION_MINOR, 3);
// create a window
if(glfwOpenWindow(width, height, 0, 0, 0, 8, 24, 8, GLFW_WINDOW) == GL_FALSE)
{
std::cerr << "failed to open window" << std::endl;
glfwTerminate();
return 1;
}
// setup windows close callback
glfwSetWindowCloseCallback(closedWindow);
if (gl3wInit())
{
std::cerr << "failed to init GL3W" << std::endl;
glfwCloseWindow();
glfwTerminate();
return 1;
}
// shader source code
// the vertex shader simply passes through data
std::string vertex_source =
"#version 330\n"
"layout(location = 0) in vec4 vposition;\n"
"void main() {\n"
" gl_Position = vposition;\n"
"}\n";
// the geometry shader creates the billboard quads
std::string geometry_source =
"#version 330\n"
"uniform mat4 View;\n"
"uniform mat4 Projection;\n"
"layout (points) in;\n"
"layout (triangle_strip, max_vertices = 4) out;\n"
"out vec2 txcoord;\n"
"void main() {\n"
" vec4 pos = View*gl_in[0].gl_Position;\n"
" txcoord = vec2(-1,-1);\n"
" gl_Position = Projection*(pos+0.2*vec4(txcoord,0,0));\n"
" EmitVertex();\n"
" txcoord = vec2( 1,-1);\n"
" gl_Position = Projection*(pos+0.2*vec4(txcoord,0,0));\n"
" EmitVertex();\n"
" txcoord = vec2(-1, 1);\n"
" gl_Position = Projection*(pos+0.2*vec4(txcoord,0,0));\n"
" EmitVertex();\n"
" txcoord = vec2( 1, 1);\n"
" gl_Position = Projection*(pos+0.2*vec4(txcoord,0,0));\n"
" EmitVertex();\n"
"}\n";
// the fragment shader creates a bell like radial color distribution
std::string fragment_source =
"#version 330\n"
"in vec2 txcoord;\n"
"layout(location = 0) out vec4 FragColor;\n"
"void main() {\n"
" float s = 0.2*(1/(1+15.*dot(txcoord, txcoord))-1/16.);\n"
" FragColor = s*vec4(0.3,0.3,1.0,1);\n"
"}\n";
// program and shader handles
GLuint shader_program, vertex_shader, geometry_shader, fragment_shader;
// we need these to properly pass the strings
const char *source;
int length;
// create and compiler vertex shader
vertex_shader = glCreateShader(GL_VERTEX_SHADER);
source = vertex_source.c_str();
length = vertex_source.size();
glShaderSource(vertex_shader, 1, &source, &length);
glCompileShader(vertex_shader);
if(!check_shader_compile_status(vertex_shader))
{
return 1;
}
// create and compiler geometry shader
geometry_shader = glCreateShader(GL_GEOMETRY_SHADER);
source = geometry_source.c_str();
length = geometry_source.size();
glShaderSource(geometry_shader, 1, &source, &length);
glCompileShader(geometry_shader);
if(!check_shader_compile_status(geometry_shader))
{
return 1;
}
// create and compiler fragment shader
fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
source = fragment_source.c_str();
length = fragment_source.size();
glShaderSource(fragment_shader, 1, &source, &length);
glCompileShader(fragment_shader);
if(!check_shader_compile_status(fragment_shader))
{
return 1;
}
// create program
shader_program = glCreateProgram();
// attach shaders
glAttachShader(shader_program, vertex_shader);
glAttachShader(shader_program, geometry_shader);
glAttachShader(shader_program, fragment_shader);
// link the program and check for errors
glLinkProgram(shader_program);
check_program_link_status(shader_program);
// obtain location of projection uniform
GLint View_location = glGetUniformLocation(shader_program, "View");
GLint Projection_location = glGetUniformLocation(shader_program, "Projection");
const int particles = 128*1024;
// randomly place particles in a cube
std::vector<glm::vec3> vertexData(particles);
std::vector<glm::vec3> velocity(particles);
for(int i = 0;i<particles;++i)
{
vertexData[i] = glm::vec3(0.5f-float(std::rand())/RAND_MAX,
0.5f-float(std::rand())/RAND_MAX,
0.5f-float(std::rand())/RAND_MAX);
vertexData[i] = glm::vec3(0.0f,20.0f,0.0f) + 5.0f*vertexData[i];
}
int buffercount = 3;
// generate vbos and vaos
GLuint vao[buffercount], vbo[buffercount];
glGenVertexArrays(buffercount, vao);
glGenBuffers(buffercount, vbo);
for(int i = 0;i<buffercount;++i)
{
glBindVertexArray(vao[i]);
glBindBuffer(GL_ARRAY_BUFFER, vbo[i]);
// fill with initial data
glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec3)*vertexData.size(), &vertexData[0], GL_DYNAMIC_DRAW);
// set up generic attrib pointers
glEnableVertexAttribArray(0);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3*sizeof(GLfloat), (char*)0 + 0*sizeof(GLfloat));
}
// "unbind" vao
glBindVertexArray(0);
// we are blending so no depth testing
glDisable(GL_DEPTH_TEST);
// enable blending
glEnable(GL_BLEND);
// and set the blend function to result = 1*source + 1*destination
glBlendFunc(GL_ONE, GL_ONE);
// define spheres for the particles to bounce off
const int spheres = 3;
glm::vec3 center[spheres];
float radius[spheres];
center[0] = glm::vec3(0,12,1);
radius[0] = 3;
center[1] = glm::vec3(-3,0,0);
radius[1] = 7;
center[2] = glm::vec3(5,-10,0);
radius[2] = 12;
// physical parameters
float dt = 1.0f/60.0f;
glm::vec3 g(0.0f, -9.81f, 0.0f);
float bounce = 1.2f; // inelastic: 1.0f, elastic: 2.0f
int current_buffer=0;
running = true;
while(running)
{
// get the time in seconds
float t = glfwGetTime();
// terminate on escape
if(glfwGetKey(GLFW_KEY_ESC))
{
running = false;
}
// update physics
for(int i = 0;i<particles;++i)
{
// resolve sphere collisions
for(int j = 0;j<spheres;++j)
{
glm::vec3 diff = vertexData[i]-center[j];
float dist = glm::length(diff);
if(dist<radius[j] && glm::dot(diff, velocity[i])<0.0f)
velocity[i] -= bounce*diff/(dist*dist)*glm::dot(diff, velocity[i]);
}
// euler iteration
velocity[i] += dt*g;
vertexData[i] += dt*velocity[i];
// reset particles that fall out to a starting position
if(vertexData[i].y<-30.0)
{
vertexData[i] = glm::vec3(
0.5f-float(std::rand())/RAND_MAX,
0.5f-float(std::rand())/RAND_MAX,
0.5f-float(std::rand())/RAND_MAX
);
vertexData[i] = glm::vec3(0.0f,20.0f,0.0f) + 5.0f*vertexData[i];
velocity[i] = glm::vec3(0,0,0);
}
}
// bind a buffer to upload to
glBindBuffer(GL_ARRAY_BUFFER, vbo[(current_buffer+buffercount-1)%buffercount]);
// explicitly invalidate the buffer
glBufferData(GL_ARRAY_BUFFER, sizeof(glm::vec3)*vertexData.size(), 0, GL_DYNAMIC_DRAW);
// map the buffer
glm::vec3 *mapped =
reinterpret_cast<glm::vec3*>(
glMapBufferRange(GL_ARRAY_BUFFER, 0,
sizeof(glm::vec3)*vertexData.size(),
GL_MAP_WRITE_BIT | GL_MAP_INVALIDATE_BUFFER_BIT
)
);
// copy data into the mapped memory
std::copy(vertexData.begin(), vertexData.end(), mapped);
// unmap the buffer
glUnmapBuffer(GL_ARRAY_BUFFER);
// clear first
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
// use the shader program
glUseProgram(shader_program);
// calculate ViewProjection matrix
glm::mat4 Projection = glm::perspective(90.0f, 4.0f / 3.0f, 0.1f, 100.f);
// translate the world/view position
glm::mat4 View = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, 0.0f, -30.0f));
// make the camera rotate around the origin
View = glm::rotate(View, 30.0f, glm::vec3(1.0f, 0.0f, 0.0f));
View = glm::rotate(View, -22.5f*t, glm::vec3(0.0f, 1.0f, 0.0f));
// set the uniform
glUniformMatrix4fv(View_location, 1, GL_FALSE, glm::value_ptr(View));
glUniformMatrix4fv(Projection_location, 1, GL_FALSE, glm::value_ptr(Projection));
// bind the current vao
glBindVertexArray(vao[current_buffer]);
// draw
glDrawArrays(GL_POINTS, 0, particles);
// check for errors
GLenum error = glGetError();
if(error != GL_NO_ERROR)
{
std::cerr << gluErrorString(error);
running = false;
}
// finally swap buffers
glfwSwapBuffers();
// advance buffer index
current_buffer = (current_buffer + 1) % buffercount;
}
// delete the created objects
glDeleteVertexArrays(buffercount, vao);
glDeleteBuffers(buffercount, vbo);
glDetachShader(shader_program, vertex_shader);
glDetachShader(shader_program, geometry_shader);
glDetachShader(shader_program, fragment_shader);
glDeleteShader(vertex_shader);
glDeleteShader(geometry_shader);
glDeleteShader(fragment_shader);
glDeleteProgram(shader_program);
glfwCloseWindow();
glfwTerminate();
return 0;
}