-
Notifications
You must be signed in to change notification settings - Fork 1
/
xnetmf_config.py
44 lines (41 loc) · 1.65 KB
/
xnetmf_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import numpy as np
class RepMethod():
def __init__(self,
align_info = None,
p=None,
k=10,
max_layer=None,
alpha = 0.1,
num_buckets = None,
normalize = True,
gammastruc = 1,
gammaattr = 1):
self.p = p #sample p points
self.k = k #control sample size
self.max_layer = max_layer #furthest hop distance up to which to compare neighbors
self.alpha = alpha #discount factor for higher layers
self.num_buckets = num_buckets #number of buckets to split node feature values into #CURRENTLY BASE OF LOG SCALE
self.normalize = normalize #whether to normalize node embeddings
self.gammastruc = gammastruc #parameter weighing structural similarity in node identity
self.gammaattr = gammaattr #parameter weighing attribute similarity in node identity
class Graph():
#Undirected, unweighted
def __init__(self,
adj,
num_buckets=None,
node_labels = None,
edge_labels = None,
graph_label = None,
node_attributes = None,
true_alignments = None):
self.G_adj = adj #adjacency matrix
self.N = self.G_adj.shape[0] #number of nodes
self.node_degrees = np.ravel(np.sum(self.G_adj, axis=0).astype(int))
self.max_degree = max(self.node_degrees)
self.num_buckets = num_buckets #how many buckets to break node features into
self.node_labels = node_labels
self.edge_labels = edge_labels
self.graph_label = graph_label
self.node_attributes = node_attributes #N x A matrix, where N is # of nodes, and A is # of attributes
self.kneighbors = None #dict of k-hop neighbors for each node
self.true_alignments = true_alignments #dict of true alignments, if this graph is a combination of multiple graphs