-
Notifications
You must be signed in to change notification settings - Fork 2k
/
process-document.js
106 lines (87 loc) · 3.59 KB
/
process-document.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
/**
* Copyright 2020, Google, Inc.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
'use strict';
async function main(projectId, location, processorId, filePath) {
// [START documentai_process_document]
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION'; // Format is 'us' or 'eu'
// const processorId = 'YOUR_PROCESSOR_ID'; // Create processor in Cloud Console
// const filePath = '/path/to/local/pdf';
const {DocumentProcessorServiceClient} =
require('@google-cloud/documentai').v1;
// Instantiates a client
const client = new DocumentProcessorServiceClient();
async function processDocument() {
// The full resource name of the processor, e.g.:
// projects/project-id/locations/location/processor/processor-id
// You must create new processors in the Cloud Console first
const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;
// Read the file into memory.
const fs = require('fs').promises;
const imageFile = await fs.readFile(filePath);
// Convert the image data to a Buffer and base64 encode it.
const encodedImage = Buffer.from(imageFile).toString('base64');
const request = {
name,
rawDocument: {
content: encodedImage,
mimeType: 'application/pdf',
},
};
// Recognizes text entities in the PDF document
const [result] = await client.processDocument(request);
const {document} = result;
// Get all of the document text as one big string
const {text} = document;
// Extract shards from the text field
const getText = textAnchor => {
if (!textAnchor.textSegments || textAnchor.textSegments.length === 0) {
return '';
}
// First shard in document doesn't have startIndex property
const startIndex = textAnchor.textSegments[0].startIndex || 0;
const endIndex = textAnchor.textSegments[0].endIndex;
return text.substring(startIndex, endIndex);
};
// Read the text recognition output from the processor
console.log('The document contains the following paragraphs:');
const [page1] = document.pages;
const {paragraphs} = page1;
for (const paragraph of paragraphs) {
const paragraphText = getText(paragraph.layout.textAnchor);
console.log(`Paragraph text:\n${paragraphText}`);
}
// Form parsing provides additional output about
// form-formatted PDFs. You must create a form
// processor in the Cloud Console to see full field details.
console.log('\nThe following form key/value pairs were detected:');
const {formFields} = page1;
for (const field of formFields) {
const fieldName = getText(field.fieldName.textAnchor);
const fieldValue = getText(field.fieldValue.textAnchor);
console.log('Extracted key value pair:');
console.log(`\t(${fieldName}, ${fieldValue})`);
}
}
// [END documentai_process_document]
await processDocument();
}
main(...process.argv.slice(2)).catch(err => {
console.error(err);
process.exitCode = 1;
});