SOLOv2: Dynamic and Fast Instance Segmentation,
Xinlong Wang, Rufeng Zhang, Tao Kong, Lei Li, Chunhua Shen
In: Proc. Advances in Neural Information Processing Systems (NeurIPS), 2020
arXiv preprint (arXiv 2003.10152)
First, follow the default instruction to install the project and datasets/README.md set up the datasets (e.g., MS-COCO).
For demo, run the following command lines:
wget https://cloudstor.aarnet.edu.au/plus/s/chF3VKQT4RDoEqC/download -O SOLOv2_R50_3x.pth
python demo/demo.py \
--config-file configs/SOLOv2/R50_3x.yaml \
--input input1.jpg input2.jpg \
--opts MODEL.WEIGHTS SOLOv2_R50_3x.pth
For training on COCO, run:
OMP_NUM_THREADS=1 python tools/train_net.py \
--config-file configs/SOLOv2/R50_3x.yaml \
--num-gpus 8 \
OUTPUT_DIR training_dir/SOLOv2_R50_3x
For evaluation on COCO, run:
OMP_NUM_THREADS=1 python tools/train_net.py \
--config-file configs/SOLOv2/R50_3x.yaml \
--eval-only \
--num-gpus 8 \
OUTPUT_DIR training_dir/SOLOv2_R50_3x \
MODEL.WEIGHTS training_dir/SOLOv2_R50_3x/model_final.pth
Name | inf. time | train. time | Mem | box AP | mask AP | download |
---|---|---|---|---|---|---|
SOLOv2_R50_3x | 47ms | ~25h(36 epochs) | 3.7GB | - | 37.6 | model |
SOLOv2_R101_3x | 61ms | ~30h(36 epochs) | 4.7GB | - | 39.0 | model |
Disclaimer:
- All models are trained with multi-scale data augmentation.
- Inference time is measured on a single V100 GPU. Training time is measured on 8 V100 GPUs.
- This is a reimplementation. Thus, the numbers are slightly different from our original paper (within 0.3% in mask AP).
- The implementation on mmdetection is available at https://github.com/WXinlong/SOLO.
Please consider citing our papers in your publications if the project helps your research. BibTeX reference is as follows.
@inproceedings{wang2020solo,
title = {{SOLO}: Segmenting Objects by Locations},
author = {Wang, Xinlong and Kong, Tao and Shen, Chunhua and Jiang, Yuning and Li, Lei},
booktitle = {Proc. Eur. Conf. Computer Vision (ECCV)},
year = {2020}
}
@inproceedings{wang2020solov2,
title = {{SOLOv2}: Dynamic and Fast Instance Segmentation},
author = {Wang, Xinlong and Zhang, Rufeng and Kong, Tao and Li, Lei and Shen, Chunhua},
booktitle = {Proc. Advances in Neural Information Processing Systems (NeurIPS)},
year = {2020}
}
@article{wang2021solo,
title = {{SOLO}: A Simple Framework for Instance Segmentation},
author = {Wang, Xinlong and Zhang, Rufeng and Shen, Chunhua and Kong, Tao and Li, Lei},
journal = {IEEE T. Pattern Analysis and Machine Intelligence (TPAMI)},
year = {2021}
}