-
Notifications
You must be signed in to change notification settings - Fork 164
/
train_speech_embedder.py
executable file
·160 lines (129 loc) · 6.94 KB
/
train_speech_embedder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 5 21:49:16 2018
@author: harry
"""
import os
import random
import time
import torch
from torch.utils.data import DataLoader
from hparam import hparam as hp
from data_load import SpeakerDatasetTIMIT, SpeakerDatasetTIMITPreprocessed
from speech_embedder_net import SpeechEmbedder, GE2ELoss, get_centroids, get_cossim
def train(model_path):
device = torch.device(hp.device)
if hp.data.data_preprocessed:
train_dataset = SpeakerDatasetTIMITPreprocessed()
else:
train_dataset = SpeakerDatasetTIMIT()
train_loader = DataLoader(train_dataset, batch_size=hp.train.N, shuffle=True, num_workers=hp.train.num_workers, drop_last=True)
embedder_net = SpeechEmbedder().to(device)
if hp.train.restore:
embedder_net.load_state_dict(torch.load(model_path))
ge2e_loss = GE2ELoss(device)
#Both net and loss have trainable parameters
optimizer = torch.optim.SGD([
{'params': embedder_net.parameters()},
{'params': ge2e_loss.parameters()}
], lr=hp.train.lr)
os.makedirs(hp.train.checkpoint_dir, exist_ok=True)
embedder_net.train()
iteration = 0
for e in range(hp.train.epochs):
total_loss = 0
for batch_id, mel_db_batch in enumerate(train_loader):
mel_db_batch = mel_db_batch.to(device)
mel_db_batch = torch.reshape(mel_db_batch, (hp.train.N*hp.train.M, mel_db_batch.size(2), mel_db_batch.size(3)))
perm = random.sample(range(0, hp.train.N*hp.train.M), hp.train.N*hp.train.M)
unperm = list(perm)
for i,j in enumerate(perm):
unperm[j] = i
mel_db_batch = mel_db_batch[perm]
#gradient accumulates
optimizer.zero_grad()
embeddings = embedder_net(mel_db_batch)
embeddings = embeddings[unperm]
embeddings = torch.reshape(embeddings, (hp.train.N, hp.train.M, embeddings.size(1)))
#get loss, call backward, step optimizer
loss = ge2e_loss(embeddings) #wants (Speaker, Utterances, embedding)
loss.backward()
torch.nn.utils.clip_grad_norm_(embedder_net.parameters(), 3.0)
torch.nn.utils.clip_grad_norm_(ge2e_loss.parameters(), 1.0)
optimizer.step()
total_loss = total_loss + loss
iteration += 1
if (batch_id + 1) % hp.train.log_interval == 0:
mesg = "{0}\tEpoch:{1}[{2}/{3}],Iteration:{4}\tLoss:{5:.4f}\tTLoss:{6:.4f}\t\n".format(time.ctime(), e+1,
batch_id+1, len(train_dataset)//hp.train.N, iteration,loss, total_loss / (batch_id + 1))
print(mesg)
if hp.train.log_file is not None:
with open(hp.train.log_file,'a') as f:
f.write(mesg)
if hp.train.checkpoint_dir is not None and (e + 1) % hp.train.checkpoint_interval == 0:
embedder_net.eval().cpu()
ckpt_model_filename = "ckpt_epoch_" + str(e+1) + "_batch_id_" + str(batch_id+1) + ".pth"
ckpt_model_path = os.path.join(hp.train.checkpoint_dir, ckpt_model_filename)
torch.save(embedder_net.state_dict(), ckpt_model_path)
embedder_net.to(device).train()
#save model
embedder_net.eval().cpu()
save_model_filename = "final_epoch_" + str(e + 1) + "_batch_id_" + str(batch_id + 1) + ".model"
save_model_path = os.path.join(hp.train.checkpoint_dir, save_model_filename)
torch.save(embedder_net.state_dict(), save_model_path)
print("\nDone, trained model saved at", save_model_path)
def test(model_path):
if hp.data.data_preprocessed:
test_dataset = SpeakerDatasetTIMITPreprocessed()
else:
test_dataset = SpeakerDatasetTIMIT()
test_loader = DataLoader(test_dataset, batch_size=hp.test.N, shuffle=True, num_workers=hp.test.num_workers, drop_last=True)
embedder_net = SpeechEmbedder()
embedder_net.load_state_dict(torch.load(model_path))
embedder_net.eval()
avg_EER = 0
for e in range(hp.test.epochs):
batch_avg_EER = 0
for batch_id, mel_db_batch in enumerate(test_loader):
assert hp.test.M % 2 == 0
enrollment_batch, verification_batch = torch.split(mel_db_batch, int(mel_db_batch.size(1)/2), dim=1)
enrollment_batch = torch.reshape(enrollment_batch, (hp.test.N*hp.test.M//2, enrollment_batch.size(2), enrollment_batch.size(3)))
verification_batch = torch.reshape(verification_batch, (hp.test.N*hp.test.M//2, verification_batch.size(2), verification_batch.size(3)))
perm = random.sample(range(0,verification_batch.size(0)), verification_batch.size(0))
unperm = list(perm)
for i,j in enumerate(perm):
unperm[j] = i
verification_batch = verification_batch[perm]
enrollment_embeddings = embedder_net(enrollment_batch)
verification_embeddings = embedder_net(verification_batch)
verification_embeddings = verification_embeddings[unperm]
enrollment_embeddings = torch.reshape(enrollment_embeddings, (hp.test.N, hp.test.M//2, enrollment_embeddings.size(1)))
verification_embeddings = torch.reshape(verification_embeddings, (hp.test.N, hp.test.M//2, verification_embeddings.size(1)))
enrollment_centroids = get_centroids(enrollment_embeddings)
sim_matrix = get_cossim(verification_embeddings, enrollment_centroids)
# calculating EER
diff = 1; EER=0; EER_thresh = 0; EER_FAR=0; EER_FRR=0
for thres in [0.01*i+0.5 for i in range(50)]:
sim_matrix_thresh = sim_matrix>thres
FAR = (sum([sim_matrix_thresh[i].float().sum()-sim_matrix_thresh[i,:,i].float().sum() for i in range(int(hp.test.N))])
/(hp.test.N-1.0)/(float(hp.test.M/2))/hp.test.N)
FRR = (sum([hp.test.M/2-sim_matrix_thresh[i,:,i].float().sum() for i in range(int(hp.test.N))])
/(float(hp.test.M/2))/hp.test.N)
# Save threshold when FAR = FRR (=EER)
if diff> abs(FAR-FRR):
diff = abs(FAR-FRR)
EER = (FAR+FRR)/2
EER_thresh = thres
EER_FAR = FAR
EER_FRR = FRR
batch_avg_EER += EER
print("\nEER : %0.2f (thres:%0.2f, FAR:%0.2f, FRR:%0.2f)"%(EER,EER_thresh,EER_FAR,EER_FRR))
avg_EER += batch_avg_EER/(batch_id+1)
avg_EER = avg_EER / hp.test.epochs
print("\n EER across {0} epochs: {1:.4f}".format(hp.test.epochs, avg_EER))
if __name__=="__main__":
if hp.training:
train(hp.model.model_path)
else:
test(hp.model.model_path)