forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
embedding.py
139 lines (118 loc) · 5.88 KB
/
embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from ..functional import embedding, unsqueeze, where
from ..module import Module
from ..parameter import Parameter
class Embedding(Module):
"""
The embedding layer takes input indices (x) and the embedding lookup table (weight) as input.
And output the corresponding embeddings according to input indices.
The size of weight is [num_embeddings, embedding_dim]
Four parameters (tp_size, tp_group, sharding_dim, tp_rank) are involved in tensor parallelism.
Only when "tp_size > 1 and tp_group is not None", tensor parallelism is enabled.
When "sharding_dim == 0", the weight is shared in the vocabulary dimension.
tp_rank must be set when sharding_dim == 0.
When "sharding_dim == 1", the weight is shard in the hidden dimension.
"""
def __init__(self,
num_embeddings,
embedding_dim,
dtype=None,
tp_size=1,
tp_group=None,
sharding_dim=0,
tp_rank=None):
super().__init__()
# num_embeddings records the total vocab size no matter using TP or not
self.num_embeddings = num_embeddings
self.embedding_dim = embedding_dim
self.tp_size = tp_size
self.tp_group = tp_group
self.sharding_dim = sharding_dim
self.tp_rank = tp_rank
if sharding_dim == 1:
self.weight = Parameter(shape=(self.num_embeddings,
self.embedding_dim // self.tp_size),
dtype=dtype)
elif sharding_dim == 0:
self.weight = Parameter(shape=(math.ceil(
self.num_embeddings / self.tp_size), self.embedding_dim),
dtype=dtype)
def forward(self, x):
return embedding(x,
self.weight.value,
tp_size=self.tp_size,
tp_group=self.tp_group,
sharding_dim=self.sharding_dim,
tp_rank=self.tp_rank)
class PromptTuningEmbedding(Embedding):
"""
PromptTuningEmbedding handles fine-tuned prompts with virtual tokens. At runtime,
a supplementary embedding dictionary is passed. Tokens whose ids are >= vocab_size are embedded
with that additional dictionary.
The prompt tuning dictionary holds multiple tasks, and each sequence is assigned a given task.
Prompt-tuned tokens from a given sequence use the adequate task dictionary, as defined by the `tasks` input.
"""
def __init__(self,
num_embeddings,
embedding_dim,
vocab_size=None,
dtype=None,
tp_size=1,
tp_group=None,
sharding_dim=0,
tp_rank=0):
super().__init__(num_embeddings, embedding_dim, dtype, tp_size,
tp_group, sharding_dim, tp_rank)
if vocab_size is None:
vocab_size = num_embeddings
self.vocab_size = vocab_size
def forward(self, tokens, prompt_embedding_table, tasks, task_vocab_size):
"""
Pass all tokens through both normal and prompt embedding tables.
Tokens are masked so that "normal" embedding only see "normal" tokens. Same logic for "prompt" embedding.
After those two embedding, combine results based on whether the token was "normal" or "prompt-tuned".
Parameters:
tokens : Tensor
the ids to embbed, size [batch_size, seq_len]
prompt_embedding_table : Tensor
the additional embedding table for prompt-tuned tokens, size [num_tasks * num_tokens_per_task, hidden_size]
tasks: Tensor
the task required by each token, size [batch_size, seq_len]
task_vocab_size: Tensor
the number of tokens used for each task, should be equal to prompt_embedding_table's num_tokens_per_task, size [1]
Returns:
Tokens' embedding
"""
# do not use ">=" because internally the layer works with floating points
prompt_tokens_mask = tokens > (self.vocab_size - 1)
# clip tokens in the [0, vocab_size) range
normal_tokens = where(prompt_tokens_mask, self.vocab_size - 1, tokens)
normal_embeddings = embedding(normal_tokens, self.weight.value,
self.tp_size, self.tp_group,
self.sharding_dim, self.tp_rank)
# put virtual tokens in the [0, max_prompt_vocab_size) range
prompt_tokens = where(prompt_tokens_mask, tokens - self.vocab_size, 0)
# add offsets to match the concatenated embedding tables
tasks = tasks * task_vocab_size
# tasks: [batch_size, seq_len]
# prompt_tokens: [batch_size, seq_len]
prompt_tokens = prompt_tokens + tasks
prompt_embeddings = embedding(prompt_tokens, prompt_embedding_table)
# prompt_tokens_mask: [batch_size, seq_len] -> [batch_size, seq_len, 1]
# combine the correct sources of embedding: normal/prompt
return where(unsqueeze(prompt_tokens_mask, -1), prompt_embeddings,
normal_embeddings)