-
Notifications
You must be signed in to change notification settings - Fork 0
/
full_pipeline_with_components.py
161 lines (127 loc) · 3.96 KB
/
full_pipeline_with_components.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import pickle
import networkx as nx
import torch
import torch.nn.functional as F
from torch_geometric.nn import SAGEConv
from torch_geometric.data import Data
import numpy as np
np.random.seed(42)
torch.manual_seed(42)
startpt = []
endpt = []
eweights = []
with open("Graph.txt", "r") as f:
ct = 0
for line in f.readlines():
a,b,c = line.strip().split()
startpt.append(int(a))
endpt.append(int(b))
eweights.append(float(c))
ct+=1
print(ct)
print(len(startpt), len(endpt))
labels = []
with open("label.txt", "r") as f:
for l in f.readlines():
labels.append(int(l.strip().split()[1]))
print("Done reading")
num_classes = len(set(labels))
def convert_to_14_bit(num):
return list(map(int, list('{0:014b}'.format(num))))
edges = torch.tensor([startpt, endpt], dtype=torch.long)
y = torch.tensor(labels)
y -= 1
x = [convert_to_14_bit(val) for val in labels]
data = Data(x=torch.Tensor(x), edge_index=edges, y=y)
print("Done Prepping data")
nodesize = y.shape[0]
trainsize = int(0.8*nodesize)
testsize = nodesize - trainsize
def convert_to_14_bit(num):
return list(map(int, list('{0:014b}'.format(num))))
edges = torch.tensor([startpt, endpt], dtype=torch.long)
y = torch.tensor(labels)
y -= 1
x = [convert_to_14_bit(val) for val in labels]
data = Data(x=torch.Tensor(x), edge_index=edges, y=y)
print("Done Prepping data")
nodesize = y.shape[0]
trainsize = int(0.8*nodesize)
testsize = nodesize - trainsize
mask_split = []
print("Creating train and test masks")
with open('mask_split.pkl', 'rb') as f:
mask_split = pickle.load(f)
mask_split = np.asarray(mask_split)
data.train_mask = mask_split == 1
data.test_mask = mask_split == 2
data.train_mask = torch.from_numpy(data.train_mask)
data.test_mask = torch.from_numpy(data.test_mask)
print(data.train_mask)
print(data.test_mask)
class Net(torch.nn.Module):
def __init__(self, in_channels, out_channels, concat=False):
super(Net, self).__init__()
self.conv1 = SAGEConv(in_channels, 16)
self.conv2 = SAGEConv(16, out_channels)
def forward(self, data):
x = F.relu(
self.conv1(data.x, data.edge_index)
)
x = F.dropout(x, p=0.5, training=self.training)
x = self.conv2(x, data.edge_index)
return F.log_softmax(x, dim=1)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
in_bits = 14
model = Net(in_bits,num_classes).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.1)
data = data.to(device)
def train():
model.train()
total_loss = 0
optimizer.zero_grad()
out = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
total_loss += loss.item()
return total_loss
def test():
model.eval()
correct = 0
_, pred = model(data).max(dim=1)
correct += pred[data.test_mask].eq(data.y[data.test_mask]).sum().item()
return correct / data.test_mask.sum().item(), pred
for epoch in range(1, 401):
loss = train()
print(
'Epoch: {:02d}, Loss: {:.4f}'.format(
epoch, loss
)
)
data.test_mask[data.test_mask != True] = True
data = data.to(device)
test_acc, pred = test()
print('Test Acc: {:.4f}'.format(test_acc))
g = nx.Graph()
for ix, label in enumerate(labels):
g.add_node(ix, label = label - 1, prediction = pred[ix])
for ix in range(len(startpt)):
s, e = startpt[ix], endpt[ix]
g.add_edge(s, e)
S = [g.subgraph(c).copy() for c in nx.connected_components(g)]
S.sort(reverse=True, key = lambda k: len(k.nodes))
component_analysis = {}
for ix, concomp in enumerate(S):
correct = 0
incorrect = 0
for k, v in concomp.nodes.items():
if v['label'] == v['prediction'].item():
correct+=1
else:
incorrect+=1
component_analysis[ix] = {
'correct': correct, 'incorrect': incorrect, 'size': len(concomp)
}
for k, v in component_analysis.items():
print(k, v)