This repository has been archived by the owner on Jun 11, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
ensemble.py
269 lines (209 loc) · 9.03 KB
/
ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
"""
Copyright (c) 2022 Intel.
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
"""
import pandas as pd
from collections import defaultdict
from itertools import permutations
import argparse
from multiprocessing import Pool
import numpy as np
import gc
# 有序数组,找到所有,不重复的2 个数字组合
def two_sum_sort_v3(nums, target):
n = len(nums)
rt = []
left, right = 0, n-1
while left < right:
sum = nums[left] + nums[right]
if sum == target:
rt.append([nums[left], nums[right]])
left += 1
right -= 1
while left < right and nums[left] == nums[left-1]:
left += 1
while left < right and nums[right] == nums[right+1]:
right -= 1
elif sum < target:
left += 1
while left < right and nums[left] == nums[left-1]:
left += 1
elif sum > target:
right -= 1
while left < right and nums[right] == nums[right+1]:
right -= 1
return rt
# 有序数组,找到所有,不重复的 n 个数和为 target
def n_sum_sort_v1(n, nums, target):
sz = len(nums)
if n < 2 or sz < n:
return []
if n == 2:
return two_sum_sort_v3(nums, target)
res = []
i = 0
while i < sz:
sub_res = n_sum_sort_v1(n-1, nums[i+1:], target-nums[i])
for item in sub_res:
res.append([nums[i]]+item)
i += 1
while i < sz and nums[i] == nums[i-1]:
i += 1
return res
# 无序数组,找到所有,不重复的 n 个数和为 target,并进行去重排列
def n_sum_permutation(nums, n, target):
nums = sorted(nums)
n_sum_res = n_sum_sort_v1(n, nums, target)
# print(n_sum_res)
res = []
for n_sum in n_sum_res:
res.extend(list(set(permutations(n_sum, n))))
res = sorted(res, key=lambda x: x[0])
return res
# 找到 n 个数, 位于[0, 1], 和为 1
# 精确到小数点后 x 位
# x = 1, 则精确到 0.1, x = 2, 精确到 0.01 位, 依次类推
def get_weight_list(n=2, x=1):
part = int(10 ** x)
nums = [i/part for i in range(part+1)]
nums = nums * n
# print(nums)
res = n_sum_permutation(nums, n, 1)
print(f'combination methods: {len(res)}')
return res
def cal_index(df, cutoff=100):
purchase_path = args.label_file
assert purchase_path != None
purchases = pd.read_csv(purchase_path)
total = df['session_id'].unique().shape[0]
# print(f'total sessions: {total}')
df = df[df['rank'] <= cutoff]
rt = pd.merge(
df, purchases,
on=['session_id', 'item_id'],
how='left'
)
rt = rt[rt['date'].notnull()]
rt['score'] = 1 / rt['rank']
hit = rt.shape[0] / total
mrr = rt['score'].sum() / total
return mrr, hit
def get_sigle_submission_score(pred_path, cutoff=100):
df = pd.read_csv(pred_path)
mrr, hit = cal_index(df, cutoff)
print(f"hit@{cutoff}: {hit:.5f}, mrr@{cutoff}: {mrr:.5f}")
print(f"{mrr:.5f} {hit:.5f}")
def get_combined_df(df_list, weights, cutoff=100):
scored_df_list = []
for df, weight in zip(df_list, weights):
df['score'] = (101 - df['rank']) * weight
scored_df_list.append(df)
df3 = pd.concat(scored_df_list)
df4 = df3.groupby(['session_id', 'item_id'])['score'].sum().reset_index(name='score')\
.reset_index(drop=True)\
.sort_values(by=['session_id', 'score'], ascending=[True, False])
df4['rank'] = df4.groupby('session_id').cumcount()
df4['rank'] = df4['rank'] + 1
df5 = df4[df4['rank'] <= cutoff]
return df5
def get_mrr_perweight(weights):
df = get_combined_df(df_list, weights, cutoff=100)
mrr, hit = cal_index(df)
print(f'w = {weights}, mrr: {mrr}, hit: {hit}')
del df
return list(weights)+[mrr, hit]
def save_combine_df(pred_path_list, save_path, weights):
# pred_1_path, pred_2_path 分别为较差和较好的那一个
assert save_path != None
print(f'saving combined df to {save_path}...')
df_list = map(lambda pred_path: pd.read_csv(pred_path), pred_path_list)
assert len(pred_path_list) == len(weights)
df = get_combined_df(df_list, weights, cutoff=100)
df = df.drop(columns=['score'])
df[['session_id', 'item_id', 'rank']] = df[['session_id', 'item_id', 'rank']].astype(int)
df.sort_values(["session_id", "rank"])\
.to_csv(save_path, index=False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-t','--task',choices=['sigle_submission_score', 'multi_submission_score', 'save_combine_df'],default='sigle_submission_score')
parser.add_argument('-p','--path-list', nargs='+', help='pred path list', required=True)
parser.add_argument('-w','--weight-list', nargs='+', help='pred weight list')
parser.add_argument('-s','--save-path', default='~/Downloads/submissions.csv', help='the save path of the submission file')
parser.add_argument('--threads', default=48, type=int,help='multi processing threads')
parser.add_argument('--label-file', default='valid_purchases_new.csv', help='the purchase file of valid dataset')
args = parser.parse_args()
print(args)
if args.task == 'sigle_submission_score':
pred_path = args.path_list[0]
get_sigle_submission_score(pred_path)
# python src/score.py \
# --task sigle_submission_score \
# --path-list '~/Downloads/submissions.csv'
elif args.task == 'multi_submission_score':
pred_path_list = args.path_list
if not isinstance(args.weight_list, type(None)) and len(args.weight_list) == len(pred_path_list):
df_list = map(lambda pred_path: pd.read_csv(pred_path), pred_path_list)
weights = list(map(float, args.weight_list))
df = get_combined_df(df_list, weights, cutoff=100)
mrr, hit = cal_index(df)
print(f"hit@{100}: {hit:.5f}, mrr@{100}: {mrr:.5f}")
print(f"{mrr:.5f} {hit:.5f}")
else:
weights_list = get_weight_list(n=len(pred_path_list))
df_list = [pd.read_csv(pred_path) for pred_path in pred_path_list]
pool = Pool(args.threads)
results = pool.map(get_mrr_perweight,weights_list)
pool.close()
pool.join()
gc.collect()
param_np = np.array(results)
param_np = param_np[np.argsort(param_np[:,-2])]
print(f'best param w and score is: {param_np[-1]}')
# python src/score.py \
# --task multi_submission_score \
# --path-list 'datas/chendi/pred/valid_prediction.csv' \
# 'datas/chendi/pred/valid_finetune_prediction.csv'
elif args.task == 'save_combine_df':
best_w = list(map(float, args.weight_list))
save_path = args.save_path
pred_path_list = args.path_list
save_combine_df(pred_path_list, save_path, weights=best_w)
# python src/score.py \
# --task save_combine_df \
# --path-list 'datas/chendi/pred/valid_prediction.csv' \
# 'datas/chendi/pred/valid_finetune_prediction.csv' \
# --weight-list 0 1 \
# --save-path '~/Downloads/submissions.csv'
pred_path = (
# local valid
'~/Downloads/submissions.csv'
'datas/chendi/pred/sumission_feat1.csv'
'datas/chendi/pred/sumission_feat3.csv'
'datas/chendi/pred/valid_prediction.csv'
'datas/chendi/pred/valid_finetune_prediction.csv'
# colab valid
'/content/drive/MyDrive/models/dressipi_v4-1/submissions_2.csv'
'/content/drive/MyDrive/share/valid_prediction.csv'
'/content/drive/MyDrive/share/valid_finetune_prediction.csv'
# colab test
'/content/drive/MyDrive/share/prediction_nofinetune.csv'
'/content/drive/MyDrive/models/dressipi_v5/submissions_1940.csv'
'/content/drive/MyDrive/share/prediction_19887.csv'
)
save_path = (
'~/Downloads/submissions.csv'
'/content/drive/MyDrive/share/submissions.csv'
)