-
Notifications
You must be signed in to change notification settings - Fork 62
/
projection.jl
517 lines (452 loc) · 19.8 KB
/
projection.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
"""
(p::ProjectTo{T})(dx)
Projects the tangent `dx` onto a specific tangent space.
The type `T` is meant to encode the largest acceptable space, so usually
this enforces `p(dx)::T`. But some subspaces which aren't subtypes of `T` may
be allowed, and in particular `dx::AbstractZero` always passes through.
Usually `T` is the "outermost" part of the type, and `p` stores additional
properties such as projectors for each constituent field.
Arrays have either one projector `p.element` expressing the element type for
an array of numbers, or else an array of projectors `p.elements`.
These properties can be supplied as keyword arguments on construction,
`p = ProjectTo{T}(; field=data, element=Projector(x))`. For each `T` in use,
corresponding methods should be written for `ProjectTo{T}(dx)` with nonzero `dx`.
When called on `dx::Thunk`, the projection is inserted into the thunk.
"""
struct ProjectTo{P,D<:NamedTuple}
info::D
end
ProjectTo{P}(info::D) where {P,D<:NamedTuple} = ProjectTo{P,D}(info)
# We'd like to write
# ProjectTo{P}(; kwargs...) where {P} = ProjectTo{P}(NamedTuple(kwargs))
#
# but the kwarg dispatcher has non-trivial complexity. See rules.jl for an
# explanation of this trick.
const EMPTY_NT = NamedTuple()
ProjectTo{P}() where {P} = ProjectTo{P}(EMPTY_NT)
const Type_kwfunc = Core.kwftype(Type).instance
function (::typeof(Type_kwfunc))(kws::Any, ::Type{ProjectTo{P}}) where {P}
return ProjectTo{P}(NamedTuple(kws))
end
Base.getproperty(p::ProjectTo, name::Symbol) = getproperty(backing(p), name)
Base.propertynames(p::ProjectTo) = propertynames(backing(p))
backing(project::ProjectTo) = getfield(project, :info)
project_type(p::ProjectTo{T}) where {T} = T
function Base.show(io::IO, project::ProjectTo{T}) where {T}
print(io, "ProjectTo{")
show(io, T)
print(io, "}")
if isempty(backing(project))
print(io, "()")
else
show(io, backing(project))
end
end
# Structs
# Generic method is to recursively make `ProjectTo`s for all their fields. Not actually
# used on unknown structs, but useful for handling many known ones in the same manner.
function generic_projector(x::T; kw...) where {T}
fields_nt::NamedTuple = backing(x)
fields_proj = map(_maybe_projector, fields_nt)
# We can't use `T` because if we have `Foo{Matrix{E}}` it should be allowed to make a
# `Foo{Diagaonal{E}}` etc. Official API for this? https://github.com/JuliaLang/julia/issues/35543
wrapT = T.name.wrapper
return ProjectTo{wrapT}(; fields_proj..., kw...)
end
function generic_projection(project::ProjectTo{T}, dx::T) where {T}
sub_projects = backing(project)
sub_dxs = backing(dx)
return construct(T, map(_maybe_call, sub_projects, sub_dxs))
end
# Used for encoding fields, leaves alone non-diff types:
_maybe_projector(x::Union{AbstractArray,Number,Ref}) = ProjectTo(x)
_maybe_projector(x) = x
# Used for re-constructing fields, restores non-diff types:
_maybe_call(f::ProjectTo, x) = f(x)
_maybe_call(f, x) = f
"""
ProjectTo(x)
Returns a `ProjectTo{T}` functor which projects a tangent `dx` onto the
relevant tangent space for `x`.
Custom `ProjectTo` methods are provided for many subtypes of `Number` (to e.g. ensure precision),
and `AbstractArray` (to e.g. ensure sparsity structure is maintained by tangent).
Called on unknown types it will (as of v1.5.0) simply return `identity`, thus can be safely
applied to arbitrary `rrule` arguments.
# Examples
```jldoctest
julia> pr = ProjectTo(1.5f0) # preserves real numbers, and floating point precision
ProjectTo{Float32}()
julia> pr(3 + 4im)
3.0f0
julia> pd = ProjectTo(Diagonal([1,2,3])) # preserves structured matrices
ProjectTo{Diagonal}(diag = ProjectTo{AbstractArray}(element = ProjectTo{Float64}(), axes = (Base.OneTo(3),)),)
julia> th = @thunk reshape(1:9,3,3);
julia> pd(th) isa Thunk
true
julia> unthunk(pd(th))
3×3 Diagonal{Float64, Vector{Float64}}:
1.0 ⋅ ⋅
⋅ 5.0 ⋅
⋅ ⋅ 9.0
julia> ProjectTo([1 2; 3 4]') # no special structure, integers are promoted to float(x)
ProjectTo{AbstractArray}(element = ProjectTo{Float64}(), axes = (Base.OneTo(2), Base.OneTo(2)))
```
"""
ProjectTo(::Any) = identity
# Generic
(::ProjectTo{T})(dx::AbstractZero) where {T} = dx
(::ProjectTo{T})(dx::NotImplemented) where {T} = dx
# Thunks
(project::ProjectTo)(dx::Thunk) = Thunk(project ∘ dx.f)
(project::ProjectTo)(dx::InplaceableThunk) = project(dx.val)
# Zero
ProjectTo(::AbstractZero) = ProjectTo{NoTangent}() # Any x::Zero in forward pass makes this one projector,
(::ProjectTo{NoTangent})(dx) = NoTangent() # but this is the projection only for nonzero gradients,
(::ProjectTo{NoTangent})(dx::AbstractZero) = dx # and this one solves an ambiguity.
# Also, any explicit construction with fields, where all fields project to zero, itself
# projects to zero. This simplifies projectors for wrapper types like Diagonal([true, false]).
const _PZ = ProjectTo{<:AbstractZero}
const _PZ_Tuple = Tuple{_PZ,Vararg{_PZ}} # 1 or more ProjectTo{<:AbstractZeros}
function ProjectTo{P}(::NamedTuple{T,<:_PZ_Tuple}) where {P,T}
return ProjectTo{NoTangent}()
end
# Tangent
# We haven't entirely figured out when to convert Tangents to "natural" representations such as
# dx::AbstractArray (when both are possible), or the reverse. So for now we just pass them through:
(::ProjectTo{T})(dx::Tangent{<:T}) where {T} = dx
#####
##### `Base`
#####
# Bool
ProjectTo(::Bool) = ProjectTo{NoTangent}() # same projector as ProjectTo(::AbstractZero) above
# Other never-differentiable types
for T in (:Symbol, :Char, :AbstractString, :RoundingMode, :IndexStyle)
@eval ProjectTo(::$T) = ProjectTo{NoTangent}()
end
# Numbers
ProjectTo(::Real) = ProjectTo{Real}()
ProjectTo(::Complex) = ProjectTo{Complex}()
ProjectTo(::Number) = ProjectTo{Number}()
ProjectTo(x::Integer) = ProjectTo(float(x))
ProjectTo(x::Complex{<:Integer}) = ProjectTo(float(x))
# Preserve low-precision floats as accidental promotion is a common performance bug
for T in (Float16, Float32, Float64, ComplexF16, ComplexF32, ComplexF64)
@eval ProjectTo(::$T) = ProjectTo{$T}()
end
# In these cases we can just `convert` as we know we are dealing with plain and simple types
(::ProjectTo{T})(dx::AbstractFloat) where {T<:AbstractFloat} = convert(T, dx)
(::ProjectTo{T})(dx::Integer) where {T<:AbstractFloat} = convert(T, dx) #needed to avoid ambiguity
# simple Complex{<:AbstractFloat}} cases
function (::ProjectTo{T})(dx::Complex{<:AbstractFloat}) where {T<:Complex{<:AbstractFloat}}
return convert(T, dx)
end
(::ProjectTo{T})(dx::AbstractFloat) where {T<:Complex{<:AbstractFloat}} = convert(T, dx)
function (::ProjectTo{T})(dx::Complex{<:Integer}) where {T<:Complex{<:AbstractFloat}}
return convert(T, dx)
end
(::ProjectTo{T})(dx::Integer) where {T<:Complex{<:AbstractFloat}} = convert(T, dx)
# Other numbers, including e.g. ForwardDiff.Dual and Symbolics.Sym, should pass through.
# We assume (lacking evidence to the contrary) that it is the right subspace of numebers.
(::ProjectTo{<:Number})(dx::Number) = dx
(project::ProjectTo{<:Real})(dx::Complex) = project(real(dx))
(project::ProjectTo{<:Complex})(dx::Real) = project(complex(dx))
# Tangents: we prefer to reconstruct numbers, but only safe to try when their constructor
# understands, including a mix of Zeros & reals. Other cases, we just let through:
(project::ProjectTo{<:Number})(dx::Tangent{<:Complex}) = project(Complex(dx.re, dx.im))
(::ProjectTo{<:Number})(dx::Tangent{<:Number}) = dx
# Arrays
# If we don't have a more specialized `ProjectTo` rule, we just assume that there is
# no structure worth re-imposing. Then any array is acceptable as a gradient.
# For arrays of numbers, just store one projector:
function ProjectTo(x::AbstractArray{T}) where {T<:Number}
return ProjectTo{AbstractArray}(; element=_eltype_projectto(T), axes=axes(x))
end
ProjectTo(x::AbstractArray{Bool}) = ProjectTo{NoTangent}()
_eltype_projectto(::Type{T}) where {T<:Number} = ProjectTo(zero(T))
_eltype_projectto(::Type{<:Irrational}) = ProjectTo{Real}()
# In other cases, store a projector per element:
function ProjectTo(xs::AbstractArray)
elements = map(ProjectTo, xs)
if elements isa AbstractArray{<:ProjectTo{<:AbstractZero}}
return ProjectTo{NoTangent}() # short-circuit if all elements project to zero
else
# Arrays of arrays come here, and will apply projectors individually:
return ProjectTo{AbstractArray}(; elements=elements, axes=axes(xs))
end
end
function (project::ProjectTo{AbstractArray})(dx::AbstractArray{S,M}) where {S,M}
# First deal with shape. The rule is that we reshape to add or remove trivial dimensions
# like dx = ones(4,1), where x = ones(4), but throw an error on dx = ones(1,4) etc.
dy = if axes(dx) === project.axes
dx
else
for d in 1:max(M, length(project.axes))
if size(dx, d) != length(get(project.axes, d, 1))
throw(_projection_mismatch(project.axes, size(dx)))
end
end
reshape(dx, project.axes)
end
# Then deal with the elements. One projector if AbstractArray{<:Number},
# or one per element for arrays of anything else, including arrays of arrays:
dz = if hasproperty(project, :element)
T = project_type(project.element)
S <: T ? dy : map(project.element, dy)
else
map((f, y) -> f(y), project.elements, dy)
end
return dz
end
# Trivial case, this won't collapse Any[NoTangent(), NoTangent()] but that's OK.
(project::ProjectTo{AbstractArray})(dx::AbstractArray{<:AbstractZero}) = NoTangent()
# Row vectors aren't acceptable as gradients for 1-row matrices:
function (project::ProjectTo{AbstractArray})(dx::LinearAlgebra.AdjOrTransAbsVec)
return project(reshape(vec(dx), 1, :))
end
# Zero-dimensional arrays -- these have a habit of going missing,
# although really Ref() is probably a better structure.
function (project::ProjectTo{AbstractArray})(dx::Number) # ... so we restore from numbers
if !(project.axes isa Tuple{})
throw(
DimensionMismatch(
"array with ndims(x) == $(length(project.axes)) > 0 cannot have dx::Number"
),
)
end
return fill(project.element(dx))
end
function _projection_mismatch(axes_x::Tuple, size_dx::Tuple)
size_x = map(length, axes_x)
return DimensionMismatch(
"variable with size(x) == $size_x cannot have a gradient with size(dx) == $size_dx"
)
end
#####
##### `Base`, part II: return of the Tangent
#####
# Ref
# Note that Ref is mutable. This causes Zygote to represent its structral tangent not as a NamedTuple,
# but as `Ref{Any}((x=val,))`. Here we use a Tangent, there is at present no mutable version, but see
# https://github.com/JuliaDiff/ChainRulesCore.jl/issues/105
function ProjectTo(x::Ref)
sub = ProjectTo(x[]) # should we worry about isdefined(Ref{Vector{Int}}(), :x)?
return ProjectTo{Tangent{typeof(x)}}(; x=sub)
end
(project::ProjectTo{<:Tangent{<:Ref}})(dx::Tangent) = project(Ref(first(backing(dx))))
function (project::ProjectTo{<:Tangent{<:Ref}})(dx::Ref)
dy = project.x(dx[])
if dy isa AbstractZero
return NoTangent()
else
return project_type(project)(; x=dy)
end
end
# Since this works like a zero-array in broadcasting, it should also accept a number:
(project::ProjectTo{<:Tangent{<:Ref}})(dx::Number) = project(Ref(dx))
# Tuple and NamedTuple
function ProjectTo(x::Tuple)
elements = map(ProjectTo, x)
if elements isa NTuple{<:Any,ProjectTo{<:AbstractZero}}
return ProjectTo{NoTangent}()
else
return ProjectTo{Tangent{typeof(x)}}(; elements=elements)
end
end
function ProjectTo(x::NamedTuple)
elements = map(ProjectTo, x)
if Tuple(elements) isa NTuple{<:Any,ProjectTo{<:AbstractZero}}
return ProjectTo{NoTangent}()
else
return ProjectTo{Tangent{typeof(x)}}(; elements...)
end
end
# This method means that projection is re-applied to the contents of a Tangent.
# We're not entirely sure whether this is every necessary; but it should be safe,
# and should often compile away:
function (project::ProjectTo{<:Tangent{<:Union{Tuple,NamedTuple}}})(dx::Tangent)
return project(backing(dx))
end
function (project::ProjectTo{<:Tangent{<:Tuple}})(dx::Tuple)
len = length(project.elements)
if length(dx) != len
str = "tuple with length(x) == $len cannot have a gradient with length(dx) == $(length(dx))"
throw(DimensionMismatch(str))
end
# Here map will fail if the lengths don't match, but gives a much less helpful error:
dy = map((f, x) -> f(x), project.elements, dx)
if all(d -> d isa AbstractZero, dy)
return NoTangent()
else
return project_type(project)(dy...)
end
end
function (project::ProjectTo{<:Tangent{<:NamedTuple}})(dx::NamedTuple)
dy = _project_namedtuple(backing(project), dx)
return project_type(project)(; dy...)
end
# Diffractor returns not necessarily a named tuple with all keys and of the same order as
# the projector
# Thus we can't use `map`
function _project_namedtuple(f::NamedTuple{fn,ft}, x::NamedTuple{xn,xt}) where {fn,ft,xn,xt}
if @generated
vals = Any[
if xn[i] in fn
:(getfield(f, $(QuoteNode(xn[i])))(getfield(x, $(QuoteNode(xn[i])))))
else
throw(
ArgumentError(
"named tuple with keys(x) == $fn cannot have a gradient with key $(xn[i])",
),
)
end for i in 1:length(xn)
]
:(NamedTuple{$xn}(($(vals...),)))
else
vals = ntuple(Val(length(xn))) do i
name = xn[i]
if name in fn
getfield(f, name)(getfield(x, name))
else
throw(
ArgumentError(
"named tuple with keys(x) == $fn cannot have a gradient with key $(xn[i])",
),
)
end
end
NamedTuple{xn}(vals)
end
end
function (project::ProjectTo{<:Tangent{<:Tuple}})(dx::AbstractArray)
for d in 1:ndims(dx)
if size(dx, d) != get(length(project.elements), d, 1)
throw(_projection_mismatch(axes(project.elements), size(dx)))
end
end
dy = reshape(dx, axes(project.elements)) # allows for dx::OffsetArray
dz = ntuple(i -> project.elements[i](dy[i]), length(project.elements))
if all(d -> d isa AbstractZero, dy)
return NoTangent()
else
return project_type(project)(dz...)
end
end
#####
##### `LinearAlgebra`
#####
using LinearAlgebra: AdjointAbsVec, TransposeAbsVec, AdjOrTransAbsVec
# UniformScaling can represent its own cotangent
ProjectTo(x::UniformScaling) = ProjectTo{UniformScaling}(; λ=ProjectTo(x.λ))
ProjectTo(x::UniformScaling{Bool}) = ProjectTo(false)
(pr::ProjectTo{UniformScaling})(dx::UniformScaling) = UniformScaling(pr.λ(dx.λ))
(pr::ProjectTo{UniformScaling})(dx::Tangent{<:UniformScaling}) = UniformScaling(pr.λ(dx.λ))
# Row vectors
ProjectTo(x::AdjointAbsVec) = ProjectTo{Adjoint}(; parent=ProjectTo(parent(x)))
# Note that while [1 2; 3 4]' isa Adjoint, we use ProjectTo{Adjoint} only to encode AdjointAbsVec.
# Transposed matrices are, like PermutedDimsArray, just a storage detail,
# but row vectors behave differently, for example [1,2,3]' * [1,2,3] isa Number
function (project::ProjectTo{Adjoint})(dx::LinearAlgebra.AdjOrTransAbsVec)
return adjoint(project.parent(adjoint(dx)))
end
function (project::ProjectTo{Adjoint})(dx::AbstractArray)
if size(dx, 1) != 1 || size(dx, 2) != length(project.parent.axes[1])
throw(_projection_mismatch((1:1, project.parent.axes...), size(dx)))
end
dy = eltype(dx) <: Real ? vec(dx) : adjoint(dx)
return adjoint(project.parent(dy))
end
function ProjectTo(x::LinearAlgebra.TransposeAbsVec)
return ProjectTo{Transpose}(; parent=ProjectTo(parent(x)))
end
function (project::ProjectTo{Transpose})(dx::LinearAlgebra.AdjOrTransAbsVec)
return transpose(project.parent(transpose(dx)))
end
function (project::ProjectTo{Transpose})(dx::AbstractArray)
if size(dx, 1) != 1 || size(dx, 2) != length(project.parent.axes[1])
throw(_projection_mismatch((1:1, project.parent.axes...), size(dx)))
end
dy = eltype(dx) <: Number ? vec(dx) : transpose(dx)
return transpose(project.parent(dy))
end
# Diagonal
ProjectTo(x::Diagonal) = ProjectTo{Diagonal}(; diag=ProjectTo(x.diag))
(project::ProjectTo{Diagonal})(dx::AbstractMatrix) = Diagonal(project.diag(diag(dx)))
(project::ProjectTo{Diagonal})(dx::Diagonal) = Diagonal(project.diag(dx.diag))
# Symmetric
for (SymHerm, chk, fun) in
((:Symmetric, :issymmetric, :transpose), (:Hermitian, :ishermitian, :adjoint))
@eval begin
function ProjectTo(x::$SymHerm)
sub = ProjectTo(parent(x))
# Because the projector stores uplo, ProjectTo(Symmetric(rand(3,3) .> 0)) isn't automatically trivial:
sub isa ProjectTo{<:AbstractZero} && return sub
return ProjectTo{$SymHerm}(; uplo=LinearAlgebra.sym_uplo(x.uplo), parent=sub)
end
function (project::ProjectTo{$SymHerm})(dx::AbstractArray)
dy = project.parent(dx)
# Here $chk means this is efficient on same-type.
# If we could mutate dx, then that could speed up action on dx::Matrix.
dz = $chk(dy) ? dy : (dy .+ $fun(dy)) ./ 2
return $SymHerm(project.parent(dz), project.uplo)
end
# This is an example of a subspace which is not a subtype,
# not clear how broadly it's worthwhile to try to support this.
function (project::ProjectTo{$SymHerm})(dx::Diagonal)
sub = project.parent # this is going to be unhappy about the size
sub_one = ProjectTo{project_type(sub)}(;
element=sub.element, axes=(sub.axes[1],)
)
return Diagonal(sub_one(dx.diag))
end
end
end
# Triangular
for UL in (:UpperTriangular, :LowerTriangular, :UnitUpperTriangular, :UnitLowerTriangular) # UpperHessenberg
@eval begin
ProjectTo(x::$UL) = ProjectTo{$UL}(; parent=ProjectTo(parent(x)))
(project::ProjectTo{$UL})(dx::AbstractArray) = $UL(project.parent(dx))
function (project::ProjectTo{$UL})(dx::Diagonal)
sub = project.parent
sub_one = ProjectTo{project_type(sub)}(;
element=sub.element, axes=(sub.axes[1],)
)
return Diagonal(sub_one(dx.diag))
end
end
end
# Weird -- not exhaustive!
# one strategy is to recurse into the struct:
ProjectTo(x::Bidiagonal{T}) where {T<:Number} = generic_projector(x)
function (project::ProjectTo{Bidiagonal})(dx::AbstractMatrix)
uplo = LinearAlgebra.sym_uplo(project.uplo)
dv = project.dv(diag(dx))
ev = project.ev(uplo === :U ? diag(dx, 1) : diag(dx, -1))
return Bidiagonal(dv, ev, uplo)
end
function (project::ProjectTo{Bidiagonal})(dx::Bidiagonal)
if project.uplo == dx.uplo
return generic_projection(project, dx) # fast path
else
uplo = LinearAlgebra.sym_uplo(project.uplo)
dv = project.dv(diag(dx))
ev = fill!(similar(dv, length(dv) - 1), 0)
return Bidiagonal(dv, ev, uplo)
end
end
ProjectTo(x::SymTridiagonal{T}) where {T<:Number} = generic_projector(x)
function (project::ProjectTo{SymTridiagonal})(dx::AbstractMatrix)
dv = project.dv(diag(dx))
ev = project.ev((diag(dx, 1) .+ diag(dx, -1)) ./ 2)
return SymTridiagonal(dv, ev)
end
(project::ProjectTo{SymTridiagonal})(dx::SymTridiagonal) = generic_projection(project, dx)
# another strategy is just to use the AbstractArray method
function ProjectTo(x::Tridiagonal{T}) where {T<:Number}
notparent = invoke(ProjectTo, Tuple{AbstractArray{T2}} where {T2<:Number}, x)
return ProjectTo{Tridiagonal}(; notparent=notparent)
end
function (project::ProjectTo{Tridiagonal})(dx::AbstractArray)
dy = project.notparent(dx)
return Tridiagonal(dy)
end
# Note that backing(::Tridiagonal) doesn't work, https://github.com/JuliaDiff/ChainRulesCore.jl/issues/392