-
Notifications
You must be signed in to change notification settings - Fork 5
/
hive.txt
4037 lines (2698 loc) · 95.3 KB
/
hive.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
dy 章初识Hadoop3
1.1数据!数据!3
1.2数据的存储与分析5
1.3查询所有数据6
1.4不仅仅是批处理7
1.5相较于其他系统的优势8
1.6ApacheHadoop发展简史12
1.7本书包含的内容16
第2章关于MapReduce19
2.1气象数据集19
2.2使用Unix工具来分析数据21
2.3使用Hadoop来分析数据22
2.4横向扩展31
2.5HadoopStreaming37
第3章Hadoop分布式文件系统42
3.1HDFS的设计42
3.2HDFS的概念44
3.3命令行接口50
3.4Hadoop文件系统52
3.5Java接口56
3.6数据流68
3.7通过distcp并行复制76
第4章关于YARN78
4.1剖析YARN应用运行机制79
4.2YARN与MapReduce1相比82
4.3YARN中的调度85
4.4延伸阅读95
第5章Hadoop的I/O操作96
5.1数据完整性96
5.2压缩99
5.3序列化109
5.4基于文件的数据结构127
第Ⅱ部分关于MapReduce
第6章MapReduce应用开发141
6.1用于配置的API142
6.2配置开发环境144
6.3用MRUnit来写单元测试152
6.4本地运行测试数据156
6.5在集群上运行160
6.6作业调优174
6.7MapReduce的工作流176
第7章MapReduce的工作机制184
7.1剖析MapReduce作业运行
机制184
7.2失败191
7.3shuffle和排序195
7.4任务的执行201
第8章MapReduce的
类型与格式207
8.1MapReduce的类型207
8.2输入格式218
8.3输出格式236
第9章MapReduce的特性243
9.1计数器243
9.2排序252
9.3连接264
9.4边数据分布270
9.5MapReduce库类276
第Ⅲ部分Hadoop的操作
dy 0章构建Hadoop集群279
dy 章 基础知识
1.1 Hadoop和MapReduce综述
1.2 Hadoop生态系统中的Hive
1.2.1 Pig
1.2.2 HBase
1.2.3 Cascading、Crunch及其他
1.3 Java和Hive:词频统计算法
1.4 后续事情
第2章 基础操作
2.1 安装预先配置好的虚拟机
2.2 安装详细步骤
2.2.1 装Java
2.2.2 安装Hadoop
2.2.3 本地模式、伪分布式模式和分布式模式
2.2.4 测试Hadoop
2.2.5 安装Hive
2.3 Hive内部是什么
2.4 启动Hive
2.5 配置Hadoop环境
2.5.1 本地模式配置
2.5.2 分布式模式和伪分布式模式配置
2.5.3 使用JDBC连接元数据
2.6 Hive命令
2.7 命令行界面
2.7.1 CLI 选项
2.7.2 变量和属性
2.7.3 Hive中“一次使用”命令
2.7.4 从文件中执行Hive查询
2.7.5 hiverc文件
2.7.6 使用Hive CLI的更多介绍
2.7.7 查看操作命令历史
2.7.8 执行shell命令
2.7.9 在Hive内使用Hadoop的dfs命令
2.7.10 Hive脚本中如何进行注释
2.7.11 显示字段名称
第3章 数据类型和文件格式
3.1 基本数据类型
3.2 集合数据类型
3.3 文本文件数据编码
3.4 读时模式
第4章 HiveQL:数据定义
4.1 Hive中的数据库
4.2 修改数据库
4.3 创建表
4.3.1 管理表
4.3.2 外部表
4.4 分区表、管理表
4.4.1 外部分区表
4.4.2 自定义表的存储格式
4.5 删除表
4.6 修改表
4.6.1 表重命名
4.6.2 增加、修改和删除表分区
4.6.3 修改列信息
4.6.4 增加列
4.6.5 删除或者替换列
4.6.6 修改表属性
4.6.7 修改存储属性
4.6.8 众多的修改表语句
…………已省略更多目录
Spark快速大数据分析-目录
推荐序 xi
译者序 xiv
序 xvi
前言 xvii
dy 章 Spark数据分析导论 1
1.1 Spark是什么 1
1.2 一个大一统的软件栈 2
1.2.1 Spark Core 2
1.2.2 Spark SQL 3
1.2.3 Spark Streaming 3
1.2.4 MLlib 3
1.2.5 GraphX 3
1.2.6 集群管理器 4
1.3 Spark的用户和用途 4
1.3.1 数据科学任务 4
1.3.2 数据处理应用 5
1.4 Spark简史 5
1.5 Spark的版本和发布 6
1.6 Spark的存储层次 6
第2章 Spark下载与入门 7
2.1 下载Spark 7
2.2 Spark中Python和Scala的shell 9
2.3 Spark 核心概念简介 12
2.4 独立应用 14
2.4.1 初始化SparkContext 15
2.4.2 构建独立应用 16
2.5 总结 19
第3章 RDD编程 21
3.1 RDD基础 21
3.2 创建RDD 23
3.3 RDD操作 24
3.3.1 转化操作 24
3.3.2 行动操作 26
3.3.3 惰性求值 27
3.4 向Spark传递函数 27
3.4.1 Python 27
3.4.2 Scala 28
3.4.3 Java 29
3.5 常见的转化操作和行动操作 30
3.5.1 基本RDD 30
3.5.2 在不同RDD类型间转换 37
3.6 持久化( 缓存) 39
3.7 总结 40
第4章 键值对操作 41
4.1 动机 41
4.2 创建Pair RDD 42
4.3 Pair RDD的转化操作 42
4.3.1 聚合操作 45
4.3.2 数据分组 49
4.3.3 连接 50
4.3.4 数据排序 51
4.4 Pair RDD的行动操作 52
4.5 数据分区(进阶) 52
4.5.1 获取RDD的分区方式 55
4.5.2 从分区中获益的操作 56
4.5.3 影响分区方式的操作 57
4.5.4 示例:PageRank 57
4.5.5 自定义分区方式 59
4.6 总结 61
第5章 数据读取与保存 63
5.1 动机 63
…………已省略更多目录
dy 章 基础知识
1.1 Hadoop和MapReduce综述
1.2 Hadoop生态系统中的Hive
1.2.1 Pig
1.2.2 HBase
1.2.3 Cascading、Crunch及其他
1.3 Java和Hive:词频统计算法
1.4 后续事情
第2章 基础操作
2.1 安装预先配置好的虚拟机
2.2 安装详细步骤
2.2.1 装Java
2.2.2 安装Hadoop
2.2.3 本地模式、伪分布式模式和分布式模式
2.2.4 测试Hadoop
2.2.5 安装Hive
2.3 Hive内部是什么
2.4 启动Hive
2.5 配置Hadoop环境
2.5.1 本地模式配置
2.5.2 分布式模式和伪分布式模式配置
2.5.3 使用JDBC连接元数据
2.6 Hive命令
2.7 命令行界面
2.7.1 CLI 选项
2.7.2 变量和属性
2.7.3 Hive中“一次使用”命令
2.7.4 从文件中执行Hive查询
2.7.5 hiverc文件
2.7.6 使用Hive CLI的更多介绍
2.7.7 查看操作命令历史
2.7.8 执行shell命令
2.7.9 在Hive内使用Hadoop的dfs命令
2.7.10 Hive脚本中如何进行注释
2.7.11 显示字段名称
第3章 数据类型和文件格式
3.1 基本数据类型
3.2 集合数据类型
3.3 文本文件数据编码
3.4 读时模式
第4章 HiveQL:数据定义
4.1 Hive中的数据库
4.2 修改数据库
4.3 创建表
4.3.1 管理表
4.3.2 外部表
4.4 分区表、管理表
4.4.1 外部分区表
4.4.2 自定义表的存储格式
4.5 删除表
4.6 修改表
4.6.1 表重命名
4.6.2 增加、修改和删除表分区
4.6.3 修改列信息
4.6.4 增加列
4.6.5 删除或者替换列
4.6.6 修改表属性
4.6.7 修改存储属性
4.6.8 众多的修改表语句
第5章 HiveQL:数据操作
5.1 向管理表中装载数据
5.2 通过查询语句向表中插入数据
5.3 单个查询语句中创建表并加载数据
5.4 导出数据
第6章 HiveQL:查询
6.1 SELECT…FROM语句
6.1.1 使用正则表达式来指定列
6.1.2 使用列值进行计算
6.1.3 算术运算符
6.1.4 使用函数
6.1.5 LIMIT语句
6.1.6 列别名
6.1.7 嵌套SELECT语句
6.1.8 CASE…WHEN…THEN 句式
6.1.9 什么情况下Hive可以避免进行MapReduce
6.2 WHERE语句
6.2.1 谓词操作符
6.2.2 关于浮点数比较
6.2.3 LIKE和RLIKE
6.3 GROUP BY 语句
6.4 JOIN语句
6.4.1 INNER JOIN
6.4.2 JOIN优化
6.4.3 LEFT OUTER JOIN
6.4.4 OUTER JOIN
6.4.5 RIGHT OUTER JOIN
6.4.6 FULL OUTER JOIN
6.4.7 LEFT SEMI-JOIN
6.4.8 笛卡尔积JOIN
6.4.9 map-side JOIN
6.5 ORDER BY和SORT BY
6.6 含有SORT BY 的DISTRIBUTE BY
6.7 CLUSTER BY
6.8 类型转换
6.9 抽样查询
6.9.1 数据块抽样
6.9.2 分桶表的输入裁剪
6.10 UNION ALL
第7章 HiveQL:视图
7.1 使用视图来降低查询复杂度
7.2 使用视图来限制基于条件过滤的数据
7.3 动态分区中的视图和map类型
7.4 视图零零碎碎相关的事情
第8章 HiveQL:索引
8.1 创建索引
8.2 重建索引
8.3 显示索引
8.4 删除索引
8.5 实现一个定制化的索引处理器
第9章 模式设计
9.1 按天划分的表
9.2 关于分区
9.3 wei一键和标准化
9.4 同一份数据多种处理
9.5 对于每个表的分区
9.6 分桶表数据存储
9.7 为表增加列
9.8 使用列存储表
9.8.1 重复数据
9.8.2 多列
9.9 (几乎)总是使用压缩
dy 0章 调优
10.1 使用EXPLAIN
10.2 EXPLAIN EXTENDED
10.3 限制调整
10.4 JOIN优化
10.5 本地模式
10.6 并行执行
10.7 严格模式
10.8 调整mapper和reducer个数
10.9 JVM重用
10.10 索引
10.11 动态分区调整
10.12 推测执行
10.13 单个MapReduce中多个GROUP BY
10.14 虚拟列
dy 1章 其他文件格式和压缩方法
11.1 确定安装编解码器
11.2 选择一种压缩编/解码器
11.3 开启中间压缩
11.4 终输出结果压缩
11.5 sequence file存储格式
11.6 使用压缩实践
11.7 存档分区
11.8 压缩:包扎
dy 2章 开发
12.1 修改Log4J属性
12.2 连接Java调试器到Hive
12.3 从源码编译Hive
12.3.1 执行Hive测试用例
12.3.2 执行hook
12.4 配置Hive和Eclipse
12.5 Maven工程中使用Hive
12.6 Hive中使用hive_test进行单元测试
12.7 新增的插件开发工具箱(PDK)
dy 3章 函数
13.1 发现和描述函数
13.2 调用函数
13.3 标准函数
13.4 聚合函数
13.5 表生成函数
13.6 一个通过日期计算其星座的UDF
13.7 UDF与GenericUDF
13.8 不变函数
13.9 用户自定义聚合函数
13.10 用户自定义表生成函数
13.10.1 可以产生多行数据的UDTF
13.10.2 可以产生具有多个字段的单行数据的UDTF
13.10.3 可以模拟复杂数据类型的UDTF
13.11 在 UDF中访问分布式缓存
13.12 以函数的方式使用注解
13.12.1 定数性(deterministic)标注
13.12.2 状态性(stateful)标注
13.12.3 wei一性
13.13 宏命令
dy 4章 Streaming
14.1 恒等变换
14.2 改变类型
14.3 投影变换
14.4 操作转换
14.5 使用分布式内存
14.6 由一行产生多行
14.7 使用streaming进行聚合计算
14.8 CLUSTER BY、DISTRIBUTE BY、SORT BY
14.9 GenericMR Tools for Streaming to Java
14.10 计算cogroup
dy 5章 自定义Hive文件和记录格式
15.1 文件和记录格式
15.2 阐明CREATE TABLE句式
15.3 文件格式
15.3.1 SequenceFile
15.3.2 RCfile
15.3.3 示例自定义输入格式:DualInputFormat
15.4 记录格式:SerDe
15.5 CSV和TSV SerDe
15.6 ObjectInspector
15.7 Thing Big Hive Reflection ObjectInspector
15.8 XML UDF
15.9 XPath相关的函数
15.10 JSON SerDe
15.11 Avro Hive SerDe
15.11.1 使用表属性信息定义Avro Schema
15.11.2 从指定URL中定义Schema
15.11.3 进化的模式
15.12 二进制输出
dy 6章 Hive的Thrift服务
16.1 启动Thrift Server
16.2 配置Groovy使用HiveServer
16.3 连接到HiveServer
16.4 获取集群状态信息
16.5 结果集模式
16.6 获取结果
16.7 获取执行计划
16.8 元数据存储方法
16.9 管理HiveServer
16.9.1 生产环境使用HiveServer
16.9.2 清理
16.10 Hive ThriftMetastore
16.10.1 ThriftMetastore 配置
16.10.2 客户端配置
dy 7章 存储处理程序和NoSQL
17.1 Storage Handler Background
17.2 HiveStorageHandler
17.3 HBase
17.4 Cassandra
17.4.1 静态列映射(Static Column Mapping)
17.4.2 为动态列转置列映射
17.4.3 Cassandra SerDe Properties
17.5 DynamoDB
dy 8章 安全
18.1 和Hadoop安全功能相结合
18.2 使用Hive进行验证
18.3 Hive中的权限管理
18.3.1 用户、组和角色
18.3.2 Grant 和 Revoke权限
18.4 分区级别的权限
18.5 自动授权
dy 9章 锁
19.1 Hive结合Zookeeper支持锁功能
19.2 显式锁和独占锁
第20章 Hive和Oozie整合
20.1 Oozie提供的多种动作(Action)
20.2 一个只包含两个查询过程的工作流示例
20.3 Oozie 网页控制台
20.4 工作流中的变量
20.5 获取输出
20.6 获取输出到变量
第21章 Hive和亚马逊网络服务系统(AWS)
21.1 为什么要弹性MapReduce
21.2 实例
21.3 开始前的注意事项
21.4 管理自有EMR Hive集群
21.5 EMR Hive上的Thrift Server服务
21.6 EMR上的实例组
21.7 配置EMR集群
21.7.1 部署hive-site.xml文件
21.7.2 部署.hiverc脚本
21.7.3 建立一个内存密集型配置
21.8 EMR上的持久层和元数据存储
21.9 EMR集群上的HDFS和S3
21.10 在S3上部署资源、配置和辅助程序脚本
21.11 S3上的日志
21.12 现买现卖
21.13 安全组
21.14 EMR和EC2以及Apache Hive的比较
21.15 包装
第22章 HCatalog
22.1 介绍
22.2 MapReduce
22.2.1 读数据
22.2.2 写数据
22.3 命令行
22.4 安全模型
22.5 架构
第23章 案例研究
23.1 m6d.com(Media6Degrees)
23.1.1 M 6D的数据科学,使用Hive和R
23.1.2 M6D UDF伪随机
23.1.3 M6D如何管理多MapReduce集群间的Hive数据访问
23.2 Outbrain
23.2.1 站内线上身份识别
23.2.2 计算复杂度
23.2.3 会话化
23.3 NASA喷气推进实验室
23.3.1 区域气候模型评价系统
23.3.2 我们的经验:为什么使用Hive
23.3.3 解决这些问题我们所面临的挑战
23.4 Photobucket
23.4.1 Photobucket 公司的大数据应用情况
23.4.2 Hive所使用的硬件资源信息
23.4.3 Hive提供了什么
23.4.4 Hive支持的用户有哪些
23.5 SimpleReach
23.6 Experiences and Needs from the Customer Trenches
23.6.1 介绍
23.6.2 Customer Trenches的用例
术语词汇表
前言
第1章 Hive介绍
1.1 Hive工作原理
1.2 Hive的数据类型
1.3 Hive的特点
1.4 本章小结
第2章 Hive架构
2.1 Hive用户接口
2.1.1 Hive CLI
2.1.2 HWI
2.1.3 Thrift服务
2.2 Hive元数据库
2.2.1 Hive元数据表结构
2.2.2 Hive元数据的三种存储模式
2.3 Hive数据存储
2.4 Hive文件格式
2.4.1 TextFile格式
2.4.2 SequenceFile格式
2.4.3 RCFile格式
2.4.4 ORC格式
2.5 本章小结
第3章 HiveQL表操作
3.1 内部表
3.2 外部表
3.3 分区表
3.3.1 静态分区
3.3.2 动态分区
3.4 桶表
3.5 视图
3.5.1 使用视图降低查询复杂度
3.5.2 使用视图来限制基于条件过滤的数据
3.5.3 动态分区中的视图和map类型
3.6 本章小结
第4章 HiveQL数据操作
4.1 装载数据到表中
4.2 通过查询语句向表中插入数据
4.3 单个查询语句中创建并加载数据
4.4 导出数据
4.5 本章小结
第5章 HiveQL查询
5.1 SELECT…FROM语句
5.1.1 使用正则表达式来指定列的
5.1.2 使用列值进行计算
5.1.3 算述运算符
5.1.4 使用函数
5.1.5 LIMIT语句
5.1.6 列别名
5.1.7 嵌套SELECT语句
5.1.8 CASE…WHEN…THEN语句
5.2 WHERE语句
5.2.1 谓词操作符
5.2.2 关于浮点数比较
5.2.3 LIKE和RLIKE
5.3 GROtJPBY语句
5.4.JOIN语句
5.4.1 INNER JOIN
5.4.2 JOIN优化
5.4.3 LEFTOUTER JOIN
5.4.4 R1GHTOUTER JOIN
5.4.5 FULLOUTER JOIN
5.4.6 LEFT SEMI JOIN
5.4.7 笛卡尔积JOIN
5.4.8 mad-side JOIN
5.5 ORDER BY和SOPT BY
5.6 含有SOftT BY的DISTRIBIJTE BY
5.7 CLUSTER BY
5.8 类型转换
5.9 抽样查询
5.9.1 数据块抽样
5.9.2 分桶表的输入裁剪
5.1 0LINIONALL
5.1 1本章小结
第6章 Hive配置与应用
6.1 Hive安装与配置
6.2 Hive访问
6.3 Hive基本操作
6.3.1 Hive CLI命令行操作讲解
6.3.2 Hive的数据类型
6.3.3 Hive表的创建
6.3.4 Hive数据导入
6.3.5 Hive数据导出
6.4 Hive数据定义
6.4.1 内部表与外部表的区别
6.4.2 内部表建立
6.4.3 外部表建立
6.4.4 表的分区与桶的建立
6.4.5 删除表与修改表结构
6.4.6 HiveQL简单查询语句
6.4.7 WHERE语句
6.5 Hive高级查询
6.6 本章小结
第7章Hive自定义函数
7.1 LIDF
7.2 UDTF
7.3 UDAF
7.4 Hive函数综合案例
7.4.1 Row-Sequence实现列自增长
7.4.2 列转行和行转列
7.5 本章小结
第8章Hive综合案例(一)
8.1 项目背景与数据情况
8.2 关键指标KPI
8.3 开发步骤分析
8.4 表结构设计
8.5 数据清洗过程
8.5.1 定期上传日志至HDFS
8.5.2 编写.MapReduce程序清理日志
8.5.3 定期清理日志至HDFS
8.5.4 查询清洗前后的数据
8.6 数据统计分析
8.6.1 借助Hive进行统计
8.6.2 使用HiveQL统计关键指标
8.7 本章小结
第9章Hive综合案例(二)
9.1 项目应用场景
9.2 设计与实现
9.2.1 日志格式分析
9.2.2 建立表
9.2.3 程序设计
9.2.4 编码实现
9.2.5 运行并测试
9.3 本章小结
第10章Hive综合案例(三)
10.1 应用场景
10.2 设计与实现
10.2.1 数据处理
10.2.2 使用Hive对清洗后的数据进行多维分析
10.2.3 在MySQL中建立数据库
10.2.4 使用sqoop把分析结果导入到MySQL中
10.2.5 程序设计与实现
10.2.6 运行并测试
第1章 数据仓库简介
1.1 什么是数据仓库 1
1.1.1 数据仓库的定义 1
1.1.2 建立数据仓库的原因 3
1.2 操作型系统与分析型系统 5
1.2.1 操作型系统 5
1.2.2 分析型系统 8
1.2.3 操作型系统和分析型系统对比 9
1.3 数据仓库架构 10
1.3.1 基本架构 10
1.3.2 主要数据仓库架构 12
1.3.3 操作数据存储 16
1.4 抽取-转换-装载 17
1.4.1 数据抽取 17