-
Notifications
You must be signed in to change notification settings - Fork 19
/
slice_acdc.py
233 lines (176 loc) · 8.48 KB
/
slice_acdc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python3.6
import re
import random
import argparse
import warnings
from pathlib import Path
from pprint import pprint
from functools import partial
from typing import Any, Callable, List, Tuple
import numpy as np
import nibabel as nib
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from numpy import unique as uniq
from skimage.io import imsave
from skimage.transform import resize
# from PIL import Image
from utils import mmap_, uc_, map_, augment, flatten_
def norm_arr(img: np.ndarray) -> np.ndarray:
casted = img.astype(np.float32)
shifted = casted - casted.min()
norm = shifted / shifted.max()
res = 255 * norm
return res.astype(np.uint8)
def get_frame(filename: str, regex: str = ".*_frame(\d+)(_gt)?\.nii.*") -> str:
matched = re.match(regex, filename)
if matched:
return matched.group(1)
raise ValueError(regex, filename)
def get_p_id(path: Path) -> str:
'''
The patient ID, for the ACDC dataset, is the folder containing the data.
'''
res = path.parent.name
assert "patient" in res, res
return res
def save_slices(img_p: Path, gt_p: Path,
dest_dir: Path, shape: Tuple[int, int], n_augment: int,
img_dir: str = "img", gt_dir: str = "gt") -> Tuple[Any, Any, Any, Any]:
p_id: str = get_p_id(img_p)
assert "patient" in p_id
assert p_id == get_p_id(gt_p)
f_id: str = get_frame(img_p.name)
assert f_id == get_frame(gt_p.name)
# Load the data
dx, dy, dz = nib.load(str(img_p)).header.get_zooms()
assert dz in [5, 6.5, 7, 10], dz
img = np.asarray(nib.load(str(img_p)).dataobj)
gt = np.asarray(nib.load(str(gt_p)).dataobj)
nx, ny = shape
fx = nx / img.shape[0]
fy = ny / img.shape[1]
# print(f"Before dx {dx:.04f}, dy {dy:.04f}")
dx /= fx
dy /= fy
# print(f"After dx {dx:.04f}, dy {dy:.04f}")
# print(dx, dy, dz)
pixel_surface: float = dx * dy
voxel_volume: float = dx * dy * dz
assert img.shape == gt.shape
# assert img.shape[:-1] == shape
assert img.dtype in [np.uint8, np.int16, np.float32]
# Normalize and check data content
norm_img = norm_arr(img) # We need to normalize the whole 3d img, not 2d slices
assert 0 == norm_img.min() and norm_img.max() == 255, (norm_img.min(), norm_img.max())
assert gt.dtype == norm_img.dtype == np.uint8
resize_: Callable = partial(resize, mode="constant", preserve_range=True, anti_aliasing=False)
save_dir_img: Path = Path(dest_dir, img_dir)
save_dir_gt: Path = Path(dest_dir, gt_dir)
sizes_2d: np.ndarray = np.zeros(img.shape[-1])
for j in range(img.shape[-1]):
img_s = norm_img[:, :, j]
gt_s = gt[:, :, j]
assert img_s.shape == gt_s.shape
assert gt_s.dtype == np.uint8
# Resize and check the data are still what we expect
r_img: np.ndarray = resize_(img_s, shape).astype(np.uint8)
r_gt: np.ndarray = resize_(gt_s, shape, order=0)
# r_gt: np.ndarray = np.array(Image.fromarray(gt_s, mode='L').resize(shape))
assert set(uniq(r_gt)).issubset(set(uniq(gt))), (r_gt.dtype, uniq(r_gt))
r_gt = r_gt.astype(np.uint8)
assert r_img.dtype == r_gt.dtype == np.uint8
assert 0 <= r_img.min() and r_img.max() <= 255 # The range might be smaller
sizes_2d[j] = (r_gt == 3).astype(np.int64).sum()
for k in range(n_augment + 1):
if k == 0:
a_img, a_gt = r_img, r_gt
else:
a_img, a_gt = map_(np.asarray, augment(r_img, r_gt))
for save_dir, data in zip([save_dir_img, save_dir_gt], [a_img, a_gt]):
filename = f"{p_id}_{f_id}_{k}_{j}.png"
save_dir.mkdir(parents=True, exist_ok=True)
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=UserWarning)
imsave(str(Path(save_dir, filename)), data)
lv_gt = (gt == 3).astype(np.uint8)
assert set(np.unique(lv_gt)) <= set([0, 1])
assert lv_gt.shape == gt.shape
lv_gt = resize_(lv_gt, (*shape, img.shape[-1]), order=0)
assert set(np.unique(lv_gt)) <= set([0, 1])
slices_sizes_px = np.einsum("xyz->z", lv_gt.astype(np.int64))
assert np.array_equal(slices_sizes_px, sizes_2d), (slices_sizes_px, sizes_2d)
# slices_sizes_px = sizes_2d[...]
slices_sizes_px = slices_sizes_px[slices_sizes_px > 0]
slices_sizes_mm2 = slices_sizes_px * pixel_surface
# volume_size_px = np.einsum("xyz->", lv_gt)
volume_size_px = slices_sizes_px.sum()
volume_size_mm3 = volume_size_px * voxel_volume
# print(f"{slices_sizes_px.mean():.0f}, {volume_size_px}")
return slices_sizes_px, slices_sizes_mm2, volume_size_px, volume_size_mm3
def main(args: argparse.Namespace):
src_path: Path = Path(args.source_dir)
dest_path: Path = Path(args.dest_dir)
# Assume the cleaning up is done before calling the script
assert src_path.exists()
assert not dest_path.exists()
# Get all the file names, avoid the temporal ones
nii_paths: List[Path] = [p for p in src_path.rglob('*.nii.gz') if "_4d" not in str(p)]
assert len(nii_paths) % 2 == 0, "Uneven number of .nii, one+ pair is broken"
# We sort now, but also id matching is checked while iterating later on
img_nii_paths: List[Path] = sorted(p for p in nii_paths if "_gt" not in str(p))
gt_nii_paths: List[Path] = sorted(p for p in nii_paths if "_gt" in str(p))
assert len(img_nii_paths) == len(gt_nii_paths)
paths: List[Tuple[Path, Path]] = list(zip(img_nii_paths, gt_nii_paths))
print(f"Found {len(img_nii_paths)} pairs in total")
pprint(paths[:5])
validation_paths: List[Tuple[Path, Path]] = random.sample(paths, args.retain)
training_paths: List[Tuple[Path, Path]] = [p for p in paths if p not in validation_paths]
assert set(validation_paths).isdisjoint(set(training_paths))
assert len(paths) == (len(validation_paths) + len(training_paths))
for mode, _paths, n_augment in zip(["train", "val"], [training_paths, validation_paths], [args.n_augment, 0]):
img_paths, gt_paths = zip(*_paths) # type: Tuple[Any, Any]
dest_dir = Path(dest_path, mode)
print(f"Slicing {len(img_paths)} pairs to {dest_dir}")
assert len(img_paths) == len(gt_paths)
pfun = partial(save_slices, dest_dir=dest_dir, shape=args.shape, n_augment=n_augment)
all_sizes = mmap_(uc_(pfun), zip(img_paths, gt_paths))
# for paths in tqdm(list(zip(img_paths, gt_paths)), ncols=50):
# uc_(pfun)(paths)
all_slices_sizes_px, all_slices_sizes_mm2, all_volume_size_px, all_volume_size_mm3 = zip(*all_sizes)
flat_sizes_px = flatten_(all_slices_sizes_px)
flat_sizes_mm2 = flatten_(all_slices_sizes_mm2)
print("px", len(flat_sizes_px), min(flat_sizes_px), max(flat_sizes_px))
print('\t', "px 5/95", np.percentile(flat_sizes_px, 5), np.percentile(flat_sizes_px, 95))
print('\t', "mm2", f"{min(flat_sizes_mm2):.02f}", f"{max(flat_sizes_mm2):.02f}")
_, axes = plt.subplots(nrows=2, ncols=2)
axes = axes.flatten()
axes[0].set_title("Slice surface (pixel)")
axes[0].boxplot(all_slices_sizes_px, whis=[0, 100])
axes[1].set_title("Slice surface (mm2)")
axes[1].boxplot(all_slices_sizes_mm2, whis=[0, 100])
axes[2].set_title("LV volume (pixel)")
axes[2].hist(all_volume_size_px, bins=len(all_volume_size_px) // 2)
axes[3].set_title("LV volume (mm3)")
axes[3].hist(all_volume_size_mm3, bins=len(all_volume_size_px) // 2)
# plt.show()
def get_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description='Slicing parameters')
parser.add_argument('--source_dir', type=str, required=True)
parser.add_argument('--dest_dir', type=str, required=True)
parser.add_argument('--img_dir', type=str, default="IMG")
parser.add_argument('--gt_dir', type=str, default="GT")
parser.add_argument('--shape', type=int, nargs="+", default=[256, 256])
parser.add_argument('--retain', type=int, default=25, help="Number of retained patient for the validation data")
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--n_augment', type=int, default=0,
help="Number of augmentation to create per image, only for the training set")
args = parser.parse_args()
random.seed(args.seed)
print(args)
return args
if __name__ == "__main__":
args = get_args()
random.seed(args.seed)
main(args)