-
Notifications
You must be signed in to change notification settings - Fork 408
/
precision_recall_curve.py
578 lines (503 loc) · 28.7 KB
/
precision_recall_curve.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Optional, Tuple, Union
import torch
from torch import Tensor
from typing_extensions import Literal
from torchmetrics.functional.classification.precision_recall_curve import (
_adjust_threshold_arg,
_binary_precision_recall_curve_arg_validation,
_binary_precision_recall_curve_compute,
_binary_precision_recall_curve_format,
_binary_precision_recall_curve_tensor_validation,
_binary_precision_recall_curve_update,
_multiclass_precision_recall_curve_arg_validation,
_multiclass_precision_recall_curve_compute,
_multiclass_precision_recall_curve_format,
_multiclass_precision_recall_curve_tensor_validation,
_multiclass_precision_recall_curve_update,
_multilabel_precision_recall_curve_arg_validation,
_multilabel_precision_recall_curve_compute,
_multilabel_precision_recall_curve_format,
_multilabel_precision_recall_curve_tensor_validation,
_multilabel_precision_recall_curve_update,
_precision_recall_curve_compute,
_precision_recall_curve_update,
)
from torchmetrics.metric import Metric
from torchmetrics.utilities import rank_zero_warn
from torchmetrics.utilities.data import dim_zero_cat
class BinaryPrecisionRecallCurve(Metric):
r"""Computes the precision-recall curve for binary tasks. The curve consist of multiple pairs of precision and
recall values evaluated at different thresholds, such that the tradeoff between the two values can been seen.
Accepts the following input tensors:
- ``preds`` (float tensor): ``(N, ...)``. Preds should be a tensor containing probabilities or logits for each
observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply
sigmoid per element.
- ``target`` (int tensor): ``(N, ...)``. Target should be a tensor containing ground truth labels, and therefore
only contain {0,1} values (except if `ignore_index` is specified).
Additional dimension ``...`` will be flattened into the batch dimension.
The implementation both supports calculating the metric in a non-binned but accurate version and a binned version
that is less accurate but more memory efficient. Setting the `thresholds` argument to `None` will activate the
non-binned version that uses memory of size :math:`\mathcal{O}(n_{samples})` whereas setting the `thresholds`
argument to either an integer, list or a 1d tensor will use a binned version that uses memory of
size :math:`\mathcal{O}(n_{thresholds})` (constant memory).
Args:
thresholds:
Can be one of:
- If set to `None`, will use a non-binned approach where thresholds are dynamically calculated from
all the data. Most accurate but also most memory consuming approach.
- If set to an `int` (larger than 1), will use that number of thresholds linearly spaced from
0 to 1 as bins for the calculation.
- If set to an `list` of floats, will use the indicated thresholds in the list as bins for the calculation
- If set to an 1d `tensor` of floats, will use the indicated thresholds in the tensor as
bins for the calculation.
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Returns:
(tuple): a tuple of 3 tensors containing:
- precision: an 1d tensor of size (n_thresholds+1, ) with precision values
- recall: an 1d tensor of size (n_thresholds+1, ) with recall values
- thresholds: an 1d tensor of size (n_thresholds, ) with increasing threshold values
Example:
>>> from torchmetrics.classification import BinaryPrecisionRecallCurve
>>> preds = torch.tensor([0, 0.5, 0.7, 0.8])
>>> target = torch.tensor([0, 1, 1, 0])
>>> metric = BinaryPrecisionRecallCurve(thresholds=None)
>>> metric(preds, target) # doctest: +NORMALIZE_WHITESPACE
(tensor([0.6667, 0.5000, 0.0000, 1.0000]),
tensor([1.0000, 0.5000, 0.0000, 0.0000]),
tensor([0.5000, 0.7000, 0.8000]))
>>> metric = BinaryPrecisionRecallCurve(thresholds=5)
>>> metric(preds, target) # doctest: +NORMALIZE_WHITESPACE
(tensor([0.5000, 0.6667, 0.6667, 0.0000, 0.0000, 1.0000]),
tensor([1., 1., 1., 0., 0., 0.]),
tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000]))
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = None
full_state_update: bool = False
def __init__(
self,
thresholds: Optional[Union[int, List[float], Tensor]] = None,
ignore_index: Optional[int] = None,
validate_args: bool = True,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if validate_args:
_binary_precision_recall_curve_arg_validation(thresholds, ignore_index)
self.ignore_index = ignore_index
self.validate_args = validate_args
thresholds = _adjust_threshold_arg(thresholds)
if thresholds is None:
self.thresholds = thresholds
self.add_state("preds", default=[], dist_reduce_fx="cat")
self.add_state("target", default=[], dist_reduce_fx="cat")
else:
self.register_buffer("thresholds", thresholds)
self.add_state(
"confmat", default=torch.zeros(len(thresholds), 2, 2, dtype=torch.long), dist_reduce_fx="sum"
)
def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore
if self.validate_args:
_binary_precision_recall_curve_tensor_validation(preds, target, self.ignore_index)
preds, target, _ = _binary_precision_recall_curve_format(preds, target, self.thresholds, self.ignore_index)
state = _binary_precision_recall_curve_update(preds, target, self.thresholds)
if isinstance(state, Tensor):
self.confmat += state
else:
self.preds.append(state[0])
self.target.append(state[1])
def compute(self) -> Tuple[Tensor, Tensor, Tensor]:
if self.thresholds is None:
state = [dim_zero_cat(self.preds), dim_zero_cat(self.target)]
else:
state = self.confmat
return _binary_precision_recall_curve_compute(state, self.thresholds)
class MulticlassPrecisionRecallCurve(Metric):
r"""Computes the precision-recall curve for multiclass tasks. The curve consist of multiple pairs of precision
and recall values evaluated at different thresholds, such that the tradeoff between the two values can been
seen.
Accepts the following input tensors:
- ``preds`` (float tensor): ``(N, C, ...)``. Preds should be a tensor containing probabilities or logits for each
observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply
softmax per sample.
- ``target`` (int tensor): ``(N, ...)``. Target should be a tensor containing ground truth labels, and therefore
only contain values in the [0, n_classes-1] range (except if `ignore_index` is specified).
Additional dimension ``...`` will be flattened into the batch dimension.
The implementation both supports calculating the metric in a non-binned but accurate version and a binned version
that is less accurate but more memory efficient. Setting the `thresholds` argument to `None` will activate the
non-binned version that uses memory of size :math:`\mathcal{O}(n_{samples})` whereas setting the `thresholds`
argument to either an integer, list or a 1d tensor will use a binned version that uses memory of
size :math:`\mathcal{O}(n_{thresholds} \times n_{classes})` (constant memory).
Args:
num_classes: Integer specifing the number of classes
thresholds:
Can be one of:
- If set to `None`, will use a non-binned approach where thresholds are dynamically calculated from
all the data. Most accurate but also most memory consuming approach.
- If set to an `int` (larger than 1), will use that number of thresholds linearly spaced from
0 to 1 as bins for the calculation.
- If set to an `list` of floats, will use the indicated thresholds in the list as bins for the calculation
- If set to an 1d `tensor` of floats, will use the indicated thresholds in the tensor as
bins for the calculation.
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Returns:
(tuple): a tuple of either 3 tensors or 3 lists containing
- precision: if `thresholds=None` a list for each class is returned with an 1d tensor of size (n_thresholds+1, )
with precision values (length may differ between classes). If `thresholds` is set to something else,
then a single 2d tensor of size (n_classes, n_thresholds+1) with precision values is returned.
- recall: if `thresholds=None` a list for each class is returned with an 1d tensor of size (n_thresholds+1, )
with recall values (length may differ between classes). If `thresholds` is set to something else,
then a single 2d tensor of size (n_classes, n_thresholds+1) with recall values is returned.
- thresholds: if `thresholds=None` a list for each class is returned with an 1d tensor of size (n_thresholds, )
with increasing threshold values (length may differ between classes). If `threshold` is set to something else,
then a single 1d tensor of size (n_thresholds, ) is returned with shared threshold values for all classes.
Example:
>>> from torchmetrics.classification import MulticlassPrecisionRecallCurve
>>> preds = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> metric = MulticlassPrecisionRecallCurve(num_classes=5, thresholds=None)
>>> precision, recall, thresholds = metric(preds, target)
>>> precision # doctest: +NORMALIZE_WHITESPACE
[tensor([1., 1.]), tensor([1., 1.]), tensor([0.2500, 0.0000, 1.0000]),
tensor([0.2500, 0.0000, 1.0000]), tensor([0., 1.])]
>>> recall
[tensor([1., 0.]), tensor([1., 0.]), tensor([1., 0., 0.]), tensor([1., 0., 0.]), tensor([nan, 0.])]
>>> thresholds
[tensor(0.7500), tensor(0.7500), tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor(0.0500)]
>>> metric = MulticlassPrecisionRecallCurve(num_classes=5, thresholds=5)
>>> metric(preds, target) # doctest: +NORMALIZE_WHITESPACE
(tensor([[0.2500, 1.0000, 1.0000, 1.0000, 0.0000, 1.0000],
[0.2500, 1.0000, 1.0000, 1.0000, 0.0000, 1.0000],
[0.2500, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000],
[0.2500, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 1.0000]]),
tensor([[1., 1., 1., 1., 0., 0.],
[1., 1., 1., 1., 0., 0.],
[1., 0., 0., 0., 0., 0.],
[1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0.]]),
tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000]))
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = None
full_state_update: bool = False
def __init__(
self,
num_classes: int,
thresholds: Optional[Union[int, List[float], Tensor]] = None,
ignore_index: Optional[int] = None,
validate_args: bool = True,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if validate_args:
_multiclass_precision_recall_curve_arg_validation(num_classes, thresholds, ignore_index)
self.num_classes = num_classes
self.ignore_index = ignore_index
self.validate_args = validate_args
thresholds = _adjust_threshold_arg(thresholds)
if thresholds is None:
self.thresholds = thresholds
self.add_state("preds", default=[], dist_reduce_fx="cat")
self.add_state("target", default=[], dist_reduce_fx="cat")
else:
self.register_buffer("thresholds", thresholds)
self.add_state(
"confmat",
default=torch.zeros(len(thresholds), num_classes, 2, 2, dtype=torch.long),
dist_reduce_fx="sum",
)
def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore
if self.validate_args:
_multiclass_precision_recall_curve_tensor_validation(preds, target, self.num_classes, self.ignore_index)
preds, target, _ = _multiclass_precision_recall_curve_format(
preds, target, self.num_classes, self.thresholds, self.ignore_index
)
state = _multiclass_precision_recall_curve_update(preds, target, self.num_classes, self.thresholds)
if isinstance(state, Tensor):
self.confmat += state
else:
self.preds.append(state[0])
self.target.append(state[1])
def compute(self) -> Union[Tuple[Tensor, Tensor, Tensor], Tuple[List[Tensor], List[Tensor], List[Tensor]]]:
if self.thresholds is None:
state = [dim_zero_cat(self.preds), dim_zero_cat(self.target)]
else:
state = self.confmat
return _multiclass_precision_recall_curve_compute(state, self.num_classes, self.thresholds)
class MultilabelPrecisionRecallCurve(Metric):
r"""Computes the precision-recall curve for multilabel tasks. The curve consist of multiple pairs of precision
and recall values evaluated at different thresholds, such that the tradeoff between the two values can been
seen.
Accepts the following input tensors:
- ``preds`` (float tensor): ``(N, C, ...)``. Preds should be a tensor containing probabilities or logits for each
observation. If preds has values outside [0,1] range we consider the input to be logits and will auto apply
sigmoid per element.
- ``target`` (int tensor): ``(N, C, ...)``. Target should be a tensor containing ground truth labels, and therefore
only contain {0,1} values (except if `ignore_index` is specified).
Additional dimension ``...`` will be flattened into the batch dimension.
The implementation both supports calculating the metric in a non-binned but accurate version and a binned version
that is less accurate but more memory efficient. Setting the `thresholds` argument to `None` will activate the
non-binned version that uses memory of size :math:`\mathcal{O}(n_{samples})` whereas setting the `thresholds`
argument to either an integer, list or a 1d tensor will use a binned version that uses memory of
size :math:`\mathcal{O}(n_{thresholds} \times n_{labels})` (constant memory).
Args:
preds: Tensor with predictions
target: Tensor with true labels
num_labels: Integer specifing the number of labels
thresholds:
Can be one of:
- If set to `None`, will use a non-binned approach where thresholds are dynamically calculated from
all the data. Most accurate but also most memory consuming approach.
- If set to an `int` (larger than 1), will use that number of thresholds linearly spaced from
0 to 1 as bins for the calculation.
- If set to an `list` of floats, will use the indicated thresholds in the list as bins for the calculation
- If set to an 1d `tensor` of floats, will use the indicated thresholds in the tensor as
bins for the calculation.
validate_args: bool indicating if input arguments and tensors should be validated for correctness.
Set to ``False`` for faster computations.
Returns:
(tuple): a tuple of either 3 tensors or 3 lists containing
- precision: if `thresholds=None` a list for each label is returned with an 1d tensor of size (n_thresholds+1, )
with precision values (length may differ between labels). If `thresholds` is set to something else,
then a single 2d tensor of size (n_labels, n_thresholds+1) with precision values is returned.
- recall: if `thresholds=None` a list for each label is returned with an 1d tensor of size (n_thresholds+1, )
with recall values (length may differ between labels). If `thresholds` is set to something else,
then a single 2d tensor of size (n_labels, n_thresholds+1) with recall values is returned.
- thresholds: if `thresholds=None` a list for each label is returned with an 1d tensor of size (n_thresholds, )
with increasing threshold values (length may differ between labels). If `threshold` is set to something else,
then a single 1d tensor of size (n_thresholds, ) is returned with shared threshold values for all labels.
Example:
>>> from torchmetrics.classification import MultilabelPrecisionRecallCurve
>>> preds = torch.tensor([[0.75, 0.05, 0.35],
... [0.45, 0.75, 0.05],
... [0.05, 0.55, 0.75],
... [0.05, 0.65, 0.05]])
>>> target = torch.tensor([[1, 0, 1],
... [0, 0, 0],
... [0, 1, 1],
... [1, 1, 1]])
>>> metric = MultilabelPrecisionRecallCurve(num_labels=3, thresholds=None)
>>> precision, recall, thresholds = metric(preds, target)
>>> precision # doctest: +NORMALIZE_WHITESPACE
[tensor([0.5000, 0.5000, 1.0000, 1.0000]), tensor([0.6667, 0.5000, 0.0000, 1.0000]),
tensor([0.7500, 1.0000, 1.0000, 1.0000])]
>>> recall # doctest: +NORMALIZE_WHITESPACE
[tensor([1.0000, 0.5000, 0.5000, 0.0000]), tensor([1.0000, 0.5000, 0.0000, 0.0000]),
tensor([1.0000, 0.6667, 0.3333, 0.0000])]
>>> thresholds # doctest: +NORMALIZE_WHITESPACE
[tensor([0.0500, 0.4500, 0.7500]), tensor([0.5500, 0.6500, 0.7500]),
tensor([0.0500, 0.3500, 0.7500])]
>>> metric = MultilabelPrecisionRecallCurve(num_labels=3, thresholds=5)
>>> metric(preds, target) # doctest: +NORMALIZE_WHITESPACE
(tensor([[0.5000, 0.5000, 1.0000, 1.0000, 0.0000, 1.0000],
[0.5000, 0.6667, 0.6667, 0.0000, 0.0000, 1.0000],
[0.7500, 1.0000, 1.0000, 1.0000, 0.0000, 1.0000]]),
tensor([[1.0000, 0.5000, 0.5000, 0.5000, 0.0000, 0.0000],
[1.0000, 1.0000, 1.0000, 0.0000, 0.0000, 0.0000],
[1.0000, 0.6667, 0.3333, 0.3333, 0.0000, 0.0000]]),
tensor([0.0000, 0.2500, 0.5000, 0.7500, 1.0000]))
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = None
full_state_update: bool = False
def __init__(
self,
num_labels: int,
thresholds: Optional[Union[int, List[float], Tensor]] = None,
ignore_index: Optional[int] = None,
validate_args: bool = True,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
if validate_args:
_multilabel_precision_recall_curve_arg_validation(num_labels, thresholds, ignore_index)
self.num_labels = num_labels
self.ignore_index = ignore_index
self.validate_args = validate_args
thresholds = _adjust_threshold_arg(thresholds)
if thresholds is None:
self.thresholds = thresholds
self.add_state("preds", default=[], dist_reduce_fx="cat")
self.add_state("target", default=[], dist_reduce_fx="cat")
else:
self.register_buffer("thresholds", thresholds)
self.add_state(
"confmat",
default=torch.zeros(len(thresholds), num_labels, 2, 2, dtype=torch.long),
dist_reduce_fx="sum",
)
def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore
if self.validate_args:
_multilabel_precision_recall_curve_tensor_validation(preds, target, self.num_labels, self.ignore_index)
preds, target, _ = _multilabel_precision_recall_curve_format(
preds, target, self.num_labels, self.thresholds, self.ignore_index
)
state = _multilabel_precision_recall_curve_update(preds, target, self.num_labels, self.thresholds)
if isinstance(state, Tensor):
self.confmat += state
else:
self.preds.append(state[0])
self.target.append(state[1])
def compute(self) -> Union[Tuple[Tensor, Tensor, Tensor], Tuple[List[Tensor], List[Tensor], List[Tensor]]]:
if self.thresholds is None:
state = [dim_zero_cat(self.preds), dim_zero_cat(self.target)]
else:
state = self.confmat
return _multilabel_precision_recall_curve_compute(state, self.num_labels, self.thresholds, self.ignore_index)
class PrecisionRecallCurve(Metric):
r"""Precision Recall Curve.
.. note::
From v0.10 an ``'binary_*'``, ``'multiclass_*'``, ``'multilabel_*'`` version now exist of each classification
metric. Moving forward we recommend using these versions. This base metric will still work as it did
prior to v0.10 until v0.11. From v0.11 the `task` argument introduced in this metric will be required
and the general order of arguments may change, such that this metric will just function as an single
entrypoint to calling the three specialized versions.
Computes precision-recall pairs for different thresholds. Works for both binary and multiclass problems. In
the case of multiclass, the values will be calculated based on a one-vs-the-rest approach.
Forward accepts
- ``preds`` (float tensor): ``(N, ...)`` (binary) or ``(N, C, ...)`` (multiclass) tensor
with probabilities, where C is the number of classes.
- ``target`` (long tensor): ``(N, ...)`` or ``(N, C, ...)`` with integer labels
Args:
num_classes: integer with number of classes for multi-label and multiclass problems.
Should be set to ``None`` for binary problems
pos_label: integer determining the positive class. Default is ``None`` which for binary problem is translated
to 1. For multiclass problems this argument should not be set as we iteratively change it in the range
``[0, num_classes-1]``
kwargs: Additional keyword arguments, see :ref:`Metric kwargs` for more info.
Example (binary case):
>>> from torchmetrics import PrecisionRecallCurve
>>> pred = torch.tensor([0, 0.1, 0.8, 0.4])
>>> target = torch.tensor([0, 1, 1, 0])
>>> pr_curve = PrecisionRecallCurve(pos_label=1)
>>> precision, recall, thresholds = pr_curve(pred, target)
>>> precision
tensor([0.6667, 0.5000, 1.0000, 1.0000])
>>> recall
tensor([1.0000, 0.5000, 0.5000, 0.0000])
>>> thresholds
tensor([0.1000, 0.4000, 0.8000])
Example (multiclass case):
>>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05, 0.05],
... [0.05, 0.75, 0.05, 0.05, 0.05],
... [0.05, 0.05, 0.75, 0.05, 0.05],
... [0.05, 0.05, 0.05, 0.75, 0.05]])
>>> target = torch.tensor([0, 1, 3, 2])
>>> pr_curve = PrecisionRecallCurve(num_classes=5)
>>> precision, recall, thresholds = pr_curve(pred, target)
>>> precision
[tensor([1., 1.]), tensor([1., 1.]), tensor([0.2500, 0.0000, 1.0000]),
tensor([0.2500, 0.0000, 1.0000]), tensor([0., 1.])]
>>> recall
[tensor([1., 0.]), tensor([1., 0.]), tensor([1., 0., 0.]), tensor([1., 0., 0.]), tensor([nan, 0.])]
>>> thresholds
[tensor(0.7500), tensor(0.7500), tensor([0.0500, 0.7500]), tensor([0.0500, 0.7500]), tensor(0.0500)]
"""
is_differentiable: bool = False
higher_is_better: Optional[bool] = None
full_state_update: bool = False
preds: List[Tensor]
target: List[Tensor]
def __new__(
cls,
num_classes: Optional[int] = None,
pos_label: Optional[int] = None,
task: Optional[Literal["binary", "multiclass", "multilabel"]] = None,
thresholds: Optional[Union[int, List[float], Tensor]] = None,
num_labels: Optional[int] = None,
ignore_index: Optional[int] = None,
validate_args: bool = True,
**kwargs: Any,
) -> Metric:
if task is not None:
kwargs.update(dict(thresholds=thresholds, ignore_index=ignore_index, validate_args=validate_args))
if task == "binary":
return BinaryPrecisionRecallCurve(**kwargs)
if task == "multiclass":
assert isinstance(num_classes, int)
return MulticlassPrecisionRecallCurve(num_classes, **kwargs)
if task == "multilabel":
assert isinstance(num_labels, int)
return MultilabelPrecisionRecallCurve(num_labels, **kwargs)
raise ValueError(
f"Expected argument `task` to either be `'binary'`, `'multiclass'` or `'multilabel'` but got {task}"
)
else:
rank_zero_warn(
"From v0.10 an `'Binary*'`, `'Multiclass*', `'Multilabel*'` version now exist of each classification"
" metric. Moving forward we recommend using these versions. This base metric will still work as it did"
" prior to v0.10 until v0.11. From v0.11 the `task` argument introduced in this metric will be required"
" and the general order of arguments may change, such that this metric will just function as an single"
" entrypoint to calling the three specialized versions.",
DeprecationWarning,
)
return super().__new__(cls)
def __init__(
self,
num_classes: Optional[int] = None,
pos_label: Optional[int] = None,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self.num_classes = num_classes
self.pos_label = pos_label
self.add_state("preds", default=[], dist_reduce_fx="cat")
self.add_state("target", default=[], dist_reduce_fx="cat")
rank_zero_warn(
"Metric `PrecisionRecallCurve` will save all targets and predictions in buffer."
" For large datasets this may lead to large memory footprint."
)
def update(self, preds: Tensor, target: Tensor) -> None: # type: ignore
"""Update state with predictions and targets.
Args:
preds: Predictions from model
target: Ground truth values
"""
preds, target, num_classes, pos_label = _precision_recall_curve_update(
preds, target, self.num_classes, self.pos_label
)
self.preds.append(preds)
self.target.append(target)
self.num_classes = num_classes
self.pos_label = pos_label
def compute(self) -> Union[Tuple[Tensor, Tensor, Tensor], Tuple[List[Tensor], List[Tensor], List[Tensor]]]:
"""Compute the precision-recall curve.
Returns:
3-element tuple containing
precision:
tensor where element ``i`` is the precision of predictions with
``score >= thresholds[i]`` and the last element is 1.
If multiclass, this is a list of such tensors, one for each class.
recall:
tensor where element ``i`` is the recall of predictions with
``score >= thresholds[i]`` and the last element is 0.
If multiclass, this is a list of such tensors, one for each class.
thresholds:
Thresholds used for computing precision/recall scores
"""
preds = dim_zero_cat(self.preds)
target = dim_zero_cat(self.target)
if not self.num_classes:
raise ValueError(f"`num_classes` bas to be positive number, but got {self.num_classes}")
return _precision_recall_curve_compute(preds, target, self.num_classes, self.pos_label)