forked from qpv-research-group/solcore5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
coherency_example_2.py
168 lines (137 loc) · 6.77 KB
/
coherency_example_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import numpy as np
import matplotlib.pyplot as plt
from solcore import siUnits, material, si
from solcore.solar_cell import SolarCell
from solcore.structure import Junction, Layer
from solcore.solar_cell_solver import solar_cell_solver, default_options
from solcore.light_source import LightSource
from solcore.state import State
incidence_angle = 45 # should be in degrees
wl = np.linspace(290, 1900, 400) * 1e-9
concX=566 # the light concentration
light_source = LightSource(source_type='standard', version='AM1.5d', x=default_options.wavelength,
output_units='photon_flux_per_m', concentration=concX) # define the input light source as AM1.5G
all_materials = []
Al2O3 = material('Al2O3')
TiO2 = material('TiO2')
AlInP = material("AlInP")
GaInP = material("GaInP")
GaAs = material('GaAs')
Ge = material("Ge")
Al02Ga08As = material('AlGaAs')
Al08Ga02As = material('AlGaAs')
# TOP CELL - GaInP
ARC1= Al2O3()
ARC2 = TiO2()
top_window_material = AlInP(Al=0.5)
top_cell_n_material = GaInP(In=0.51,Nd=siUnits(2e18, "cm-3"), hole_diffusion_length=si("300nm"))
top_cell_p_material = GaInP(In=0.51,Na=siUnits(1.5e17, "cm-3"), electron_diffusion_length=si("2um"))
top_cell_TJ_material = Al08Ga02As(Al=0.8)
for mat in [top_cell_n_material, top_cell_p_material]:
mat.band_gap = material('GaInP')(In=0.51).band_gap
mat.eff_mass_hh_z = material('GaInP')(In=0.51).eff_mass_hh_z
mat.eff_mass_electron = material('GaInP')(In=0.51).eff_mass_electron
mat.relative_permittivity = 11.75
all_materials.append(ARC1)
all_materials.append(ARC2)
all_materials.append(top_window_material)
all_materials.append(top_cell_n_material)
all_materials.append(top_cell_p_material)
all_materials.append(top_cell_TJ_material)
# MID CELL - InGaAs
mid_window_material = GaInP(In=0.51)
mid_cell_n_material = GaAs(Nd=siUnits(2e18, "cm-3"), hole_diffusion_length=si("300nm"))
mid_cell_p_material = GaAs(Na=siUnits(1.5e17, "cm-3"), electron_diffusion_length=si("3um"))
mid_BSF_material = GaInP(In=0.51)
mid_cell_TJ_material = Al08Ga02As(Al=0.8)
for mat in [mid_cell_n_material, mid_cell_p_material]:
mat.band_gap = material('GaAs')(In=0.01).band_gap
mat.eff_mass_hh_z = material('GaAs')(In=0.01).eff_mass_hh_z
mat.eff_mass_electron = material('GaAs')(In=0.01).eff_mass_electron
mat.relative_permittivity = 13.1
all_materials.append(mid_window_material)
all_materials.append(mid_cell_n_material)
all_materials.append(mid_cell_p_material)
all_materials.append(mid_BSF_material)
all_materials.append(mid_cell_TJ_material)
DBR1 = Al02Ga08As(Al=0.2)
DBR2 = Al08Ga02As(Al=0.8)
all_materials.append(DBR1)
all_materials.append(DBR2)
# BOTTOM CELL - Ge
bot_buffer_material = GaAs()
bot_nucleation_material = GaInP(In=0.51)
bot_cell_n_material = Ge(Nd=siUnits(2e18, "cm-3"), hole_diffusion_length=si("800nm"))
bot_cell_p_material = Ge(Na=siUnits(1e17, "cm-3"), electron_diffusion_length=si("50um"))
for mat in [bot_cell_n_material, bot_cell_p_material]:
mat.band_gap = material('Ge')().band_gap
mat.eff_mass_hh_z = material('Ge')().eff_mass_hh_z
mat.eff_mass_electron = material('Ge')().eff_mass_electron
mat.relative_permittivity = 16
all_materials.append(bot_buffer_material)
all_materials.append(bot_nucleation_material)
all_materials.append(bot_cell_n_material)
all_materials.append(bot_cell_p_material)
# We add some other properties to the materials, assumed the same in all cases, for simplicity.
# If different, we should have added them above in the definition of the materials.
for mat in all_materials:
mat.hole_mobility = 3.4e-3
mat.electron_mobility = 5e-2
ARC = [Layer(si('80nm'), material = ARC1), Layer(si('33nm'), material = ARC2)]
top_junction = [Junction([Layer(si("18nm"), material=top_window_material, role='window'),
Layer(si("100nm"), material=top_cell_n_material, role='emitter'),
Layer(si("891.248nm"), material=top_cell_p_material, role='base'),
Layer(si("111.445nm"), material = top_cell_TJ_material, role = 'TJ')
], sn=1, sp=1, kind='DA')]
middle_junction = [Junction([Layer(si("18nm"), material=mid_window_material, role='window'),
Layer(si("100nm"), material=mid_cell_n_material, role='emitter'),
Layer(si("1632.091nm"), material=mid_cell_p_material, role='base'),
Layer(si("10nm"), material = mid_BSF_material, role = 'BSF'),
Layer(si("91.084nm"), material=mid_cell_TJ_material, role='TJ')
], sn=1, sp=1, kind='DA')]
DBRa = 16 * [Layer(width=si("62.638nm"), material=DBR1), Layer(width=si("71.980nm"), material=DBR2)]
DBRb = 16 * [Layer(width=si("68.919nm"), material=DBR1), Layer(width=si("78.725nm"), material=DBR2)]
DBRc = 16 * [Layer(width=si("75.838nm"), material=DBR1), Layer(width=si("86.805nm"), material=DBR2)]
# the 4* here makes the two layers given repeat 4 times (so 8 layers total)
bottom_junction = [Junction([Layer(si("405.048nm"), material=bot_buffer_material, role='window'),
Layer(si("14.369nm"), material=bot_nucleation_material, role='window'),
Layer(si("200nm"), material=bot_cell_n_material, role='emitter'),
Layer(si("29800nm"), material = bot_cell_p_material, role = 'base')
], sn=1, sp=1, kind='DA')]
# And, finally, we put everything together, adding also the surface recombination velocities sn and sp.
# setting kind = 'DA' in the Junction definition tells the electrical solver later to use the depletion approximation
optical_struct = SolarCell(ARC + top_junction + middle_junction + DBRa + DBRb + DBRc + bottom_junction,
shading = 0.05)
wl = np.linspace(250, 1700, 400)*1e-9
options = State()
options.wavelength = wl
options.optics_method = 'TMM'
options.no_back_reflection = False
options.pol = 'p'
options.BL_correction = True
options.coherency_list = 111*['c']
options.theta = 30
solar_cell_solver(optical_struct, 'qe', options)
plt.figure()
plt.plot(wl*1e9, optical_struct[0].layer_absorption+optical_struct[1].layer_absorption)
plt.plot(wl*1e9, optical_struct[2].layer_absorption)
plt.plot(wl*1e9, optical_struct[3].layer_absorption)
plt.plot(wl*1e9, optical_struct[100].layer_absorption)
plt.plot(wl*1e9, optical_struct.absorbed, '--')
plt.plot(wl*1e9, optical_struct.transmitted, '--')
plt.plot(wl*1e9, optical_struct.reflected, '--')
plt.legend(['ARC', 'top', 'middle', 'bottom', 'A', 'T', 'R'])
plt.ylim(0,1)
plt.ylabel('Absorption/Transmission/Reflection')
plt.xlabel('Wavelength (nm)')
plt.show()
plt.figure()
plt.plot(wl*1e9, 100*optical_struct[2].eqe(wl))
plt.plot(wl*1e9, 100*optical_struct[3].eqe(wl))
plt.plot(wl*1e9, 100*optical_struct[100].eqe(wl))
plt.plot(wl*1e9, 100*optical_struct.absorbed, '--')
plt.legend(['top', 'middle', 'bottom', 'A'])
plt.ylim(0,100)
plt.ylabel('EQE (%)')
plt.xlabel('Wavelength (nm)')
plt.show()