forked from bevyengine/bevy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gpu_readback.rs
221 lines (200 loc) · 7.89 KB
/
gpu_readback.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
//! Simple example demonstrating the use of the [`Readback`] component to read back data from the GPU
//! using both a storage buffer and texture.
use bevy::{
prelude::*,
render::{
extract_resource::{ExtractResource, ExtractResourcePlugin},
gpu_readback::{Readback, ReadbackComplete},
render_asset::{RenderAssetUsages, RenderAssets},
render_graph,
render_graph::{RenderGraph, RenderLabel},
render_resource::{
binding_types::{storage_buffer, texture_storage_2d},
*,
},
renderer::{RenderContext, RenderDevice},
storage::{GpuShaderStorageBuffer, ShaderStorageBuffer},
texture::GpuImage,
Render, RenderApp, RenderSet,
},
};
/// This example uses a shader source file from the assets subdirectory
const SHADER_ASSET_PATH: &str = "shaders/gpu_readback.wgsl";
// The length of the buffer sent to the gpu
const BUFFER_LEN: usize = 16;
fn main() {
App::new()
.add_plugins((
DefaultPlugins,
GpuReadbackPlugin,
ExtractResourcePlugin::<ReadbackBuffer>::default(),
ExtractResourcePlugin::<ReadbackImage>::default(),
))
.insert_resource(ClearColor(Color::BLACK))
.add_systems(Startup, setup)
.run();
}
// We need a plugin to organize all the systems and render node required for this example
struct GpuReadbackPlugin;
impl Plugin for GpuReadbackPlugin {
fn build(&self, _app: &mut App) {}
fn finish(&self, app: &mut App) {
let render_app = app.sub_app_mut(RenderApp);
render_app.init_resource::<ComputePipeline>().add_systems(
Render,
prepare_bind_group
.in_set(RenderSet::PrepareBindGroups)
// We don't need to recreate the bind group every frame
.run_if(not(resource_exists::<GpuBufferBindGroup>)),
);
// Add the compute node as a top level node to the render graph
// This means it will only execute once per frame
render_app
.world_mut()
.resource_mut::<RenderGraph>()
.add_node(ComputeNodeLabel, ComputeNode::default());
}
}
#[derive(Resource, ExtractResource, Clone)]
struct ReadbackBuffer(Handle<ShaderStorageBuffer>);
#[derive(Resource, ExtractResource, Clone)]
struct ReadbackImage(Handle<Image>);
fn setup(
mut commands: Commands,
mut images: ResMut<Assets<Image>>,
mut buffers: ResMut<Assets<ShaderStorageBuffer>>,
) {
// Create a storage buffer with some data
let buffer = vec![0u32; BUFFER_LEN];
let mut buffer = ShaderStorageBuffer::from(buffer);
// We need to enable the COPY_SRC usage so we can copy the buffer to the cpu
buffer.buffer_description.usage |= BufferUsages::COPY_SRC;
let buffer = buffers.add(buffer);
// Create a storage texture with some data
let size = Extent3d {
width: BUFFER_LEN as u32,
height: 1,
..default()
};
let mut image = Image::new_fill(
size,
TextureDimension::D2,
&[0, 0, 0, 0],
TextureFormat::R32Uint,
RenderAssetUsages::RENDER_WORLD,
);
// We also need to enable the COPY_SRC, as well as STORAGE_BINDING so we can use it in the
// compute shader
image.texture_descriptor.usage |= TextureUsages::COPY_SRC | TextureUsages::STORAGE_BINDING;
let image = images.add(image);
// Spawn the readback components. For each frame, the data will be read back from the GPU
// asynchronously and trigger the `ReadbackComplete` event on this entity. Despawn the entity
// to stop reading back the data.
commands.spawn(Readback::buffer(buffer.clone())).observe(
|trigger: Trigger<ReadbackComplete>| {
// This matches the type which was used to create the `ShaderStorageBuffer` above,
// and is a convenient way to interpret the data.
let data: Vec<u32> = trigger.event().to_shader_type();
info!("Buffer {:?}", data);
},
);
// This is just a simple way to pass the buffer handle to the render app for our compute node
commands.insert_resource(ReadbackBuffer(buffer));
// Textures can also be read back from the GPU. Pay careful attention to the format of the
// texture, as it will affect how the data is interpreted.
commands.spawn(Readback::texture(image.clone())).observe(
|trigger: Trigger<ReadbackComplete>| {
// You probably want to interpret the data as a color rather than a `ShaderType`,
// but in this case we know the data is a single channel storage texture, so we can
// interpret it as a `Vec<u32>`
let data: Vec<u32> = trigger.event().to_shader_type();
info!("Image {:?}", data);
},
);
commands.insert_resource(ReadbackImage(image));
}
#[derive(Resource)]
struct GpuBufferBindGroup(BindGroup);
fn prepare_bind_group(
mut commands: Commands,
pipeline: Res<ComputePipeline>,
render_device: Res<RenderDevice>,
buffer: Res<ReadbackBuffer>,
image: Res<ReadbackImage>,
buffers: Res<RenderAssets<GpuShaderStorageBuffer>>,
images: Res<RenderAssets<GpuImage>>,
) {
let buffer = buffers.get(&buffer.0).unwrap();
let image = images.get(&image.0).unwrap();
let bind_group = render_device.create_bind_group(
None,
&pipeline.layout,
&BindGroupEntries::sequential((
buffer.buffer.as_entire_buffer_binding(),
image.texture_view.into_binding(),
)),
);
commands.insert_resource(GpuBufferBindGroup(bind_group));
}
#[derive(Resource)]
struct ComputePipeline {
layout: BindGroupLayout,
pipeline: CachedComputePipelineId,
}
impl FromWorld for ComputePipeline {
fn from_world(world: &mut World) -> Self {
let render_device = world.resource::<RenderDevice>();
let layout = render_device.create_bind_group_layout(
None,
&BindGroupLayoutEntries::sequential(
ShaderStages::COMPUTE,
(
storage_buffer::<Vec<u32>>(false),
texture_storage_2d(TextureFormat::R32Uint, StorageTextureAccess::WriteOnly),
),
),
);
let shader = world.load_asset(SHADER_ASSET_PATH);
let pipeline_cache = world.resource::<PipelineCache>();
let pipeline = pipeline_cache.queue_compute_pipeline(ComputePipelineDescriptor {
label: Some("GPU readback compute shader".into()),
layout: vec![layout.clone()],
push_constant_ranges: Vec::new(),
shader: shader.clone(),
shader_defs: Vec::new(),
entry_point: "main".into(),
});
ComputePipeline { layout, pipeline }
}
}
/// Label to identify the node in the render graph
#[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)]
struct ComputeNodeLabel;
/// The node that will execute the compute shader
#[derive(Default)]
struct ComputeNode {}
impl render_graph::Node for ComputeNode {
fn run(
&self,
_graph: &mut render_graph::RenderGraphContext,
render_context: &mut RenderContext,
world: &World,
) -> Result<(), render_graph::NodeRunError> {
let pipeline_cache = world.resource::<PipelineCache>();
let pipeline = world.resource::<ComputePipeline>();
let bind_group = world.resource::<GpuBufferBindGroup>();
if let Some(init_pipeline) = pipeline_cache.get_compute_pipeline(pipeline.pipeline) {
let mut pass =
render_context
.command_encoder()
.begin_compute_pass(&ComputePassDescriptor {
label: Some("GPU readback compute pass"),
..default()
});
pass.set_bind_group(0, &bind_group.0, &[]);
pass.set_pipeline(init_pipeline);
pass.dispatch_workgroups(BUFFER_LEN as u32, 1, 1);
}
Ok(())
}
}