forked from guetlove/FastICA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fpica.m
905 lines (820 loc) · 25.4 KB
/
fpica.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
function [A, W] = fpica(X, whiteningMatrix, dewhiteningMatrix, approach, ...
numOfIC, g, finetune, a1, a2, myy, stabilization, ...
epsilon, maxNumIterations, maxFinetune, initState, ...
guess, sampleSize, displayMode, displayInterval, ...
s_verbose);
%FPICA - Fixed point ICA. Main algorithm of FASTICA.
%
% [A, W] = fpica(whitesig, whiteningMatrix, dewhiteningMatrix, approach,
% numOfIC, g, finetune, a1, a2, mu, stabilization, epsilon,
% maxNumIterations, maxFinetune, initState, guess, sampleSize,
% displayMode, displayInterval, verbose);
%
% Perform independent component analysis using Hyvarinen's fixed point
% algorithm. Outputs an estimate of the mixing matrix A and its inverse W.
%
% whitesig :the whitened data as row vectors
% whiteningMatrix :can be obtained with function whitenv
% dewhiteningMatrix :can be obtained with function whitenv
% approach [ 'symm' | 'defl' ] :the approach used (deflation or symmetric)
% numOfIC [ 0 - Dim of whitesig ] :number of independent components estimated
% g [ 'pow3' | 'tanh' | :the nonlinearity used
% 'gaus' | 'skew' ]
% finetune [same as g + 'off'] :the nonlinearity used in finetuning.
% a1 :parameter for tuning 'tanh'
% a2 :parameter for tuning 'gaus'
% mu :step size in stabilized algorithm
% stabilization [ 'on' | 'off' ] :if mu < 1 then automatically on
% epsilon :stopping criterion
% maxNumIterations :maximum number of iterations
% maxFinetune :maximum number of iteretions for finetuning
% initState [ 'rand' | 'guess' ] :initial guess or random initial state. See below
% guess :initial guess for A. Ignored if initState = 'rand'
% sampleSize [ 0 - 1 ] :percentage of the samples used in one iteration
% displayMode [ 'signals' | 'basis' | :plot running estimate
% 'filters' | 'off' ]
% displayInterval :number of iterations we take between plots
% verbose [ 'on' | 'off' ] :report progress in text format
%
% EXAMPLE
% [E, D] = pcamat(vectors);
% [nv, wm, dwm] = whitenv(vectors, E, D);
% [A, W] = fpica(nv, wm, dwm);
%
%
% This function is needed by FASTICA and FASTICAG
%
% See also FASTICA, FASTICAG, WHITENV, PCAMAT
% @(#)$Id: fpica.m,v 1.7 2005/06/16 12:52:55 jarmo Exp $
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Global variable for stopping the ICA calculations from the GUI
global g_FastICA_interrupt;
if isempty(g_FastICA_interrupt)
clear global g_FastICA_interrupt;
interruptible = 0;
else
interruptible = 1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Default values
if nargin < 3, error('Not enough arguments!'); end
[vectorSize, numSamples] = size(X);
if nargin < 20, s_verbose = 'on'; end
if nargin < 19, displayInterval = 1; end
if nargin < 18, displayMode = 'on'; end
if nargin < 17, sampleSize = 1; end
if nargin < 16, guess = 1; end
if nargin < 15, initState = 'rand'; end
if nargin < 14, maxFinetune = 100; end
if nargin < 13, maxNumIterations = 1000; end
if nargin < 12, epsilon = 0.0001; end
if nargin < 11, stabilization = 'on'; end
if nargin < 10, myy = 1; end
if nargin < 9, a2 = 1; end
if nargin < 8, a1 = 1; end
if nargin < 7, finetune = 'off'; end
if nargin < 6, g = 'pow3'; end
if nargin < 5, numOfIC = vectorSize; end % vectorSize = Dim
if nargin < 4, approach = 'defl'; end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the data
if ~isreal(X)
error('Input has an imaginary part.');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the value for verbose
switch lower(s_verbose)
case 'on'
b_verbose = 1;
case 'off'
b_verbose = 0;
otherwise
error(sprintf('Illegal value [ %s ] for parameter: ''verbose''\n', s_verbose));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the value for approach
switch lower(approach)
case 'symm'
approachMode = 1;
case 'defl'
approachMode = 2;
otherwise
error(sprintf('Illegal value [ %s ] for parameter: ''approach''\n', approach));
end
if b_verbose, fprintf('Used approach [ %s ].\n', approach); end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the value for numOfIC
if vectorSize < numOfIC
error('Must have numOfIC <= Dimension!');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the sampleSize
if sampleSize > 1
sampleSize = 1;
if b_verbose
fprintf('Warning: Setting ''sampleSize'' to 1.\n');
end
elseif sampleSize < 1
if (sampleSize * numSamples) < 1000
sampleSize = min(1000/numSamples, 1);
if b_verbose
fprintf('Warning: Setting ''sampleSize'' to %0.3f (%d samples).\n', ...
sampleSize, floor(sampleSize * numSamples));
end
end
end
if b_verbose
if b_verbose & (sampleSize < 1)
fprintf('Using about %0.0f%% of the samples in random order in every step.\n',sampleSize*100);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the value for nonlinearity.
switch lower(g)
case 'pow3'
gOrig = 10;
case 'tanh'
gOrig = 20;
case {'gaus', 'gauss'}
gOrig = 30;
case 'skew'
gOrig = 40;
otherwise
error(sprintf('Illegal value [ %s ] for parameter: ''g''\n', g));
end
if sampleSize ~= 1
gOrig = gOrig + 2;
end
if myy ~= 1
gOrig = gOrig + 1;
end
if b_verbose,
fprintf('Used nonlinearity [ %s ].\n', g);
end
finetuningEnabled = 1;
switch lower(finetune)
case 'pow3'
gFine = 10 + 1;
case 'tanh'
gFine = 20 + 1;
case {'gaus', 'gauss'}
gFine = 30 + 1;
case 'skew'
gFine = 40 + 1;
case 'off'
if myy ~= 1
gFine = gOrig;
else
gFine = gOrig + 1;
end
finetuningEnabled = 0;
otherwise
error(sprintf('Illegal value [ %s ] for parameter: ''finetune''\n', ...
finetune));
end
if b_verbose & finetuningEnabled
fprintf('Finetuning enabled (nonlinearity: [ %s ]).\n', finetune);
end
switch lower(stabilization)
case 'on'
stabilizationEnabled = 1;
case 'off'
if myy ~= 1
stabilizationEnabled = 1;
else
stabilizationEnabled = 0;
end
otherwise
error(sprintf('Illegal value [ %s ] for parameter: ''stabilization''\n', ...
stabilization));
end
if b_verbose & stabilizationEnabled
fprintf('Using stabilized algorithm.\n');
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Some other parameters
myyOrig = myy;
% When we start fine-tuning we'll set myy = myyK * myy
myyK = 0.01;
% How many times do we try for convergence until we give up.
failureLimit = 5;
usedNlinearity = gOrig;
stroke = 0;
notFine = 1;
long = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the value for initial state.
switch lower(initState)
case 'rand'
initialStateMode = 0;
case 'guess'
if size(guess,1) ~= size(whiteningMatrix,2)
initialStateMode = 0;
if b_verbose
fprintf('Warning: size of initial guess is incorrect. Using random initial guess.\n');
end
else
initialStateMode = 1;
if size(guess,2) < numOfIC
if b_verbose
fprintf('Warning: initial guess only for first %d components. Using random initial guess for others.\n', size(guess,2));
end
guess(:, size(guess, 2) + 1:numOfIC) = ...
rand(vectorSize,numOfIC-size(guess,2))-.5;
elseif size(guess,2)>numOfIC
guess=guess(:,1:numOfIC);
fprintf('Warning: Initial guess too large. The excess column are dropped.\n');
end
if b_verbose, fprintf('Using initial guess.\n'); end
end
otherwise
error(sprintf('Illegal value [ %s ] for parameter: ''initState''\n', initState));
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Checking the value for display mode.
switch lower(displayMode)
case {'off', 'none'}
usedDisplay = 0;
case {'on', 'signals'}
usedDisplay = 1;
if (b_verbose & (numSamples > 10000))
fprintf('Warning: Data vectors are very long. Plotting may take long time.\n');
end
if (b_verbose & (numOfIC > 25))
fprintf('Warning: There are too many signals to plot. Plot may not look good.\n');
end
case 'basis'
usedDisplay = 2;
if (b_verbose & (numOfIC > 25))
fprintf('Warning: There are too many signals to plot. Plot may not look good.\n');
end
case 'filters'
usedDisplay = 3;
if (b_verbose & (vectorSize > 25))
fprintf('Warning: There are too many signals to plot. Plot may not look good.\n');
end
otherwise
error(sprintf('Illegal value [ %s ] for parameter: ''displayMode''\n', displayMode));
end
% The displayInterval can't be less than 1...
if displayInterval < 1
displayInterval = 1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if b_verbose, fprintf('Starting ICA calculation...\n'); end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SYMMETRIC APPROACH
if approachMode == 1,
% set some parameters more...
usedNlinearity = gOrig;
stroke = 0;
notFine = 1;
long = 0;
A = zeros(vectorSize, numOfIC); % Dewhitened basis vectors.
if initialStateMode == 0
% Take random orthonormal initial vectors.
B = orth (randn (vectorSize, numOfIC));
elseif initialStateMode == 1
% Use the given initial vector as the initial state
B = whiteningMatrix * guess;
end
BOld = zeros(size(B));
BOld2 = zeros(size(B));
% This is the actual fixed-point iteration loop.
for round = 1:maxNumIterations + 1,
if round == maxNumIterations + 1,
fprintf('No convergence after %d steps\n', maxNumIterations);
fprintf('Note that the plots are probably wrong.\n');
if ~isempty(B)
% Symmetric orthogonalization.
B = B * real(inv(B' * B)^(1/2));
W = B' * whiteningMatrix;
A = dewhiteningMatrix * B;
else
W = [];
A = [];
end
return;
end
if (interruptible & g_FastICA_interrupt)
if b_verbose
fprintf('\n\nCalculation interrupted by the user\n');
end
if ~isempty(B)
W = B' * whiteningMatrix;
A = dewhiteningMatrix * B;
else
W = [];
A = [];
end
return;
end
% Symmetric orthogonalization.
B = B * real(inv(B' * B)^(1/2));
% Test for termination condition. Note that we consider opposite
% directions here as well.
minAbsCos = min(abs(diag(B' * BOld)));
minAbsCos2 = min(abs(diag(B' * BOld2)));
if (1 - minAbsCos < epsilon)
if finetuningEnabled & notFine
if b_verbose, fprintf('Initial convergence, fine-tuning: \n'); end;
notFine = 0;
usedNlinearity = gFine;
myy = myyK * myyOrig;
BOld = zeros(size(B));
BOld2 = zeros(size(B));
else
if b_verbose, fprintf('Convergence after %d steps\n', round); end
% Calculate the de-whitened vectors.
A = dewhiteningMatrix * B;
break;
end
elseif stabilizationEnabled
if (~stroke) & (1 - minAbsCos2 < epsilon)
if b_verbose, fprintf('Stroke!\n'); end;
stroke = myy;
myy = .5*myy;
if mod(usedNlinearity,2) == 0
usedNlinearity = usedNlinearity + 1;
end
elseif stroke
myy = stroke;
stroke = 0;
if (myy == 1) & (mod(usedNlinearity,2) ~= 0)
usedNlinearity = usedNlinearity - 1;
end
elseif (~long) & (round>maxNumIterations/2)
if b_verbose, fprintf('Taking long (reducing step size)\n'); end;
long = 1;
myy = .5*myy;
if mod(usedNlinearity,2) == 0
usedNlinearity = usedNlinearity + 1;
end
end
end
BOld2 = BOld;
BOld = B;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Show the progress...
if b_verbose
if round == 1
fprintf('Step no. %d\n', round);
else
fprintf('Step no. %d, change in value of estimate: %.3g \n', round, 1 - minAbsCos);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Also plot the current state...
switch usedDisplay
case 1
if rem(round, displayInterval) == 0,
% There was and may still be other displaymodes...
% 1D signals
icaplot('dispsig',(X'*B)');
drawnow;
end
case 2
if rem(round, displayInterval) == 0,
% ... and now there are :-)
% 1D basis
A = dewhiteningMatrix * B;
icaplot('dispsig',A');
drawnow;
end
case 3
if rem(round, displayInterval) == 0,
% ... and now there are :-)
% 1D filters
W = B' * whiteningMatrix;
icaplot('dispsig',W);
drawnow;
end
otherwise
end
switch usedNlinearity
% pow3
case 10
B = (X * (( X' * B) .^ 3)) / numSamples - 3 * B;
case 11
% optimoitu - epsilonin kokoisia eroja
% tämä on optimoitu koodi, katso vanha koodi esim.
% aikaisemmista versioista kuten 2.0 beta3
Y = X' * B;
Gpow3 = Y .^ 3;
Beta = sum(Y .* Gpow3);
D = diag(1 ./ (Beta - 3 * numSamples));
B = B + myy * B * (Y' * Gpow3 - diag(Beta)) * D;
case 12
Xsub=X(:, getSamples(numSamples, sampleSize));
B = (Xsub * (( Xsub' * B) .^ 3)) / size(Xsub,2) - 3 * B;
case 13
% Optimoitu
Ysub=X(:, getSamples(numSamples, sampleSize))' * B;
Gpow3 = Ysub .^ 3;
Beta = sum(Ysub .* Gpow3);
D = diag(1 ./ (Beta - 3 * size(Ysub', 2)));
B = B + myy * B * (Ysub' * Gpow3 - diag(Beta)) * D;
% tanh
case 20
hypTan = tanh(a1 * X' * B);
B = X * hypTan / numSamples - ...
ones(size(B,1),1) * sum(1 - hypTan .^ 2) .* B / numSamples * ...
a1;
case 21
% optimoitu - epsilonin kokoisia
Y = X' * B;
hypTan = tanh(a1 * Y);
Beta = sum(Y .* hypTan);
D = diag(1 ./ (Beta - a1 * sum(1 - hypTan .^ 2)));
B = B + myy * B * (Y' * hypTan - diag(Beta)) * D;
case 22
Xsub=X(:, getSamples(numSamples, sampleSize));
hypTan = tanh(a1 * Xsub' * B);
B = Xsub * hypTan / size(Xsub, 2) - ...
ones(size(B,1),1) * sum(1 - hypTan .^ 2) .* B / size(Xsub, 2) * a1;
case 23
% Optimoitu
Y = X(:, getSamples(numSamples, sampleSize))' * B;
hypTan = tanh(a1 * Y);
Beta = sum(Y .* hypTan);
D = diag(1 ./ (Beta - a1 * sum(1 - hypTan .^ 2)));
B = B + myy * B * (Y' * hypTan - diag(Beta)) * D;
% gauss
case 30
U = X' * B;
Usquared=U .^ 2;
ex = exp(-a2 * Usquared / 2);
gauss = U .* ex;
dGauss = (1 - a2 * Usquared) .*ex;
B = X * gauss / numSamples - ...
ones(size(B,1),1) * sum(dGauss)...
.* B / numSamples ;
case 31
% optimoitu
Y = X' * B;
ex = exp(-a2 * (Y .^ 2) / 2);
gauss = Y .* ex;
Beta = sum(Y .* gauss);
D = diag(1 ./ (Beta - sum((1 - a2 * (Y .^ 2)) .* ex)));
B = B + myy * B * (Y' * gauss - diag(Beta)) * D;
case 32
Xsub=X(:, getSamples(numSamples, sampleSize));
U = Xsub' * B;
Usquared=U .^ 2;
ex = exp(-a2 * Usquared / 2);
gauss = U .* ex;
dGauss = (1 - a2 * Usquared) .*ex;
B = Xsub * gauss / size(Xsub,2) - ...
ones(size(B,1),1) * sum(dGauss)...
.* B / size(Xsub,2) ;
case 33
% Optimoitu
Y = X(:, getSamples(numSamples, sampleSize))' * B;
ex = exp(-a2 * (Y .^ 2) / 2);
gauss = Y .* ex;
Beta = sum(Y .* gauss);
D = diag(1 ./ (Beta - sum((1 - a2 * (Y .^ 2)) .* ex)));
B = B + myy * B * (Y' * gauss - diag(Beta)) * D;
% skew
case 40
B = (X * ((X' * B) .^ 2)) / numSamples;
case 41
% Optimoitu
Y = X' * B;
Gskew = Y .^ 2;
Beta = sum(Y .* Gskew);
D = diag(1 ./ (Beta));
B = B + myy * B * (Y' * Gskew - diag(Beta)) * D;
case 42
Xsub=X(:, getSamples(numSamples, sampleSize));
B = (Xsub * ((Xsub' * B) .^ 2)) / size(Xsub,2);
case 43
% Uusi optimoitu
Y = X(:, getSamples(numSamples, sampleSize))' * B;
Gskew = Y .^ 2;
Beta = sum(Y .* Gskew);
D = diag(1 ./ (Beta));
B = B + myy * B * (Y' * Gskew - diag(Beta)) * D;
otherwise
error('Code for desired nonlinearity not found!');
end
end
% Calculate ICA filters.
W = B' * whiteningMatrix;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Also plot the last one...
switch usedDisplay
case 1
% There was and may still be other displaymodes...
% 1D signals
icaplot('dispsig',(X'*B)');
drawnow;
case 2
% ... and now there are :-)
% 1D basis
icaplot('dispsig',A');
drawnow;
case 3
% ... and now there are :-)
% 1D filters
icaplot('dispsig',W);
drawnow;
otherwise
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DEFLATION APPROACH
if approachMode == 2
B = zeros(vectorSize);
% The search for a basis vector is repeated numOfIC times.
round = 1;
numFailures = 0;
while round <= numOfIC,
myy = myyOrig;
usedNlinearity = gOrig;
stroke = 0;
notFine = 1;
long = 0;
endFinetuning = 0;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Show the progress...
if b_verbose, fprintf('IC %d ', round); end
% Take a random initial vector of lenght 1 and orthogonalize it
% with respect to the other vectors.
if initialStateMode == 0
w = randn (vectorSize, 1);
elseif initialStateMode == 1
w=whiteningMatrix*guess(:,round);
end
w = w - B * B' * w;
w = w / norm(w);
wOld = zeros(size(w));
wOld2 = zeros(size(w));
% This is the actual fixed-point iteration loop.
% for i = 1 : maxNumIterations + 1
i = 1;
gabba = 1;
while i <= maxNumIterations + gabba
if (usedDisplay > 0)
drawnow;
end
if (interruptible & g_FastICA_interrupt)
if b_verbose
fprintf('\n\nCalculation interrupted by the user\n');
end
return;
end
% Project the vector into the space orthogonal to the space
% spanned by the earlier found basis vectors. Note that we can do
% the projection with matrix B, since the zero entries do not
% contribute to the projection.
w = w - B * B' * w;
w = w / norm(w);
if notFine
if i == maxNumIterations + 1
if b_verbose
fprintf('\nComponent number %d did not converge in %d iterations.\n', round, maxNumIterations);
end
round = round - 1;
numFailures = numFailures + 1;
if numFailures > failureLimit
if b_verbose
fprintf('Too many failures to converge (%d). Giving up.\n', numFailures);
end
if round == 0
A=[];
W=[];
end
return;
end
% numFailures > failurelimit
break;
end
% i == maxNumIterations + 1
else
% if notFine
if i >= endFinetuning
wOld = w; % So the algorithm will stop on the next test...
end
end
% if notFine
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Show the progress...
if b_verbose, fprintf('.'); end;
% Test for termination condition. Note that the algorithm has
% converged if the direction of w and wOld is the same, this
% is why we test the two cases.
if norm(w - wOld) < epsilon | norm(w + wOld) < epsilon
if finetuningEnabled & notFine
if b_verbose, fprintf('Initial convergence, fine-tuning: '); end;
notFine = 0;
gabba = maxFinetune;
wOld = zeros(size(w));
wOld2 = zeros(size(w));
usedNlinearity = gFine;
myy = myyK * myyOrig;
endFinetuning = maxFinetune + i;
else
numFailures = 0;
% Save the vector
B(:, round) = w;
% Calculate the de-whitened vector.
A(:,round) = dewhiteningMatrix * w;
% Calculate ICA filter.
W(round,:) = w' * whiteningMatrix;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Show the progress...
if b_verbose, fprintf('computed ( %d steps ) \n', i); end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Also plot the current state...
switch usedDisplay
case 1
if rem(round, displayInterval) == 0,
% There was and may still be other displaymodes...
% 1D signals
temp = X'*B;
icaplot('dispsig',temp(:,1:numOfIC)');
drawnow;
end
case 2
if rem(round, displayInterval) == 0,
% ... and now there are :-)
% 1D basis
icaplot('dispsig',A');
drawnow;
end
case 3
if rem(round, displayInterval) == 0,
% ... and now there are :-)
% 1D filters
icaplot('dispsig',W);
drawnow;
end
end
% switch usedDisplay
break; % IC ready - next...
end
%if finetuningEnabled & notFine
elseif stabilizationEnabled
if (~stroke) & (norm(w - wOld2) < epsilon | norm(w + wOld2) < ...
epsilon)
stroke = myy;
if b_verbose, fprintf('Stroke!'); end;
myy = .5*myy;
if mod(usedNlinearity,2) == 0
usedNlinearity = usedNlinearity + 1;
end
elseif stroke
myy = stroke;
stroke = 0;
if (myy == 1) & (mod(usedNlinearity,2) ~= 0)
usedNlinearity = usedNlinearity - 1;
end
elseif (notFine) & (~long) & (i > maxNumIterations / 2)
if b_verbose, fprintf('Taking long (reducing step size) '); end;
long = 1;
myy = .5*myy;
if mod(usedNlinearity,2) == 0
usedNlinearity = usedNlinearity + 1;
end
end
end
wOld2 = wOld;
wOld = w;
switch usedNlinearity
% pow3
case 10
w = (X * ((X' * w) .^ 3)) / numSamples - 3 * w;
case 11
EXGpow3 = (X * ((X' * w) .^ 3)) / numSamples;
Beta = w' * EXGpow3;
w = w - myy * (EXGpow3 - Beta * w) / (3 - Beta);
case 12
Xsub=X(:,getSamples(numSamples, sampleSize));
w = (Xsub * ((Xsub' * w) .^ 3)) / size(Xsub, 2) - 3 * w;
case 13
Xsub=X(:,getSamples(numSamples, sampleSize));
EXGpow3 = (Xsub * ((Xsub' * w) .^ 3)) / size(Xsub, 2);
Beta = w' * EXGpow3;
w = w - myy * (EXGpow3 - Beta * w) / (3 - Beta);
% tanh
case 20
hypTan = tanh(a1 * X' * w);
w = (X * hypTan - a1 * sum(1 - hypTan .^ 2)' * w) / numSamples;
case 21
hypTan = tanh(a1 * X' * w);
Beta = w' * X * hypTan;
w = w - myy * ((X * hypTan - Beta * w) / ...
(a1 * sum((1-hypTan .^2)') - Beta));
case 22
Xsub=X(:,getSamples(numSamples, sampleSize));
hypTan = tanh(a1 * Xsub' * w);
w = (Xsub * hypTan - a1 * sum(1 - hypTan .^ 2)' * w) / size(Xsub, 2);
case 23
Xsub=X(:,getSamples(numSamples, sampleSize));
hypTan = tanh(a1 * Xsub' * w);
Beta = w' * Xsub * hypTan;
w = w - myy * ((Xsub * hypTan - Beta * w) / ...
(a1 * sum((1-hypTan .^2)') - Beta));
% gauss
case 30
% This has been split for performance reasons.
u = X' * w;
u2=u.^2;
ex=exp(-a2 * u2/2);
gauss = u.*ex;
dGauss = (1 - a2 * u2) .*ex;
w = (X * gauss - sum(dGauss)' * w) / numSamples;
case 31
u = X' * w;
u2=u.^2;
ex=exp(-a2 * u2/2);
gauss = u.*ex;
dGauss = (1 - a2 * u2) .*ex;
Beta = w' * X * gauss;
w = w - myy * ((X * gauss - Beta * w) / ...
(sum(dGauss)' - Beta));
case 32
Xsub=X(:,getSamples(numSamples, sampleSize));
u = Xsub' * w;
u2=u.^2;
ex=exp(-a2 * u2/2);
gauss = u.*ex;
dGauss = (1 - a2 * u2) .*ex;
w = (Xsub * gauss - sum(dGauss)' * w) / size(Xsub, 2);
case 33
Xsub=X(:,getSamples(numSamples, sampleSize));
u = Xsub' * w;
u2=u.^2;
ex=exp(-a2 * u2/2);
gauss = u.*ex;
dGauss = (1 - a2 * u2) .*ex;
Beta = w' * Xsub * gauss;
w = w - myy * ((Xsub * gauss - Beta * w) / ...
(sum(dGauss)' - Beta));
% skew
case 40
w = (X * ((X' * w) .^ 2)) / numSamples;
case 41
EXGskew = (X * ((X' * w) .^ 2)) / numSamples;
Beta = w' * EXGskew;
w = w - myy * (EXGskew - Beta*w)/(-Beta);
case 42
Xsub=X(:,getSamples(numSamples, sampleSize));
w = (Xsub * ((Xsub' * w) .^ 2)) / size(Xsub, 2);
case 43
Xsub=X(:,getSamples(numSamples, sampleSize));
EXGskew = (Xsub * ((Xsub' * w) .^ 2)) / size(Xsub, 2);
Beta = w' * EXGskew;
w = w - myy * (EXGskew - Beta*w)/(-Beta);
otherwise
error('Code for desired nonlinearity not found!');
end
% Normalize the new w.
w = w / norm(w);
i = i + 1;
end
round = round + 1;
end
if b_verbose, fprintf('Done.\n'); end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Also plot the ones that may not have been plotted.
if (usedDisplay > 0) & (rem(round-1, displayInterval) ~= 0)
switch usedDisplay
case 1
% There was and may still be other displaymodes...
% 1D signals
temp = X'*B;
icaplot('dispsig',temp(:,1:numOfIC)');
drawnow;
case 2
% ... and now there are :-)
% 1D basis
icaplot('dispsig',A');
drawnow;
case 3
% ... and now there are :-)
% 1D filters
icaplot('dispsig',W);
drawnow;
otherwise
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% In the end let's check the data for some security
if ~isreal(A)
if b_verbose, fprintf('Warning: removing the imaginary part from the result.\n'); end
A = real(A);
W = real(W);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Subfunction
% Calculates tanh simplier and faster than Matlab tanh.
function y=tanh(x)
y = 1 - 2 ./ (exp(2 * x) + 1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Samples = getSamples(max, percentage)
Samples = find(rand(1, max) < percentage);