forked from Azure/azureml-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
deploy-custom-container-mlflow.sh
122 lines (99 loc) · 4.4 KB
/
deploy-custom-container-mlflow.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#!/bin/bash
set -e
# <set_variables>
export ENDPOINT_NAME="<ENDPOINT_NAME>"
export ACR_NAME="<CONTAINER_REGISTRY_NAME>"
# </set_variables>
export ENDPOINT_NAME=endpt-moe-`echo $RANDOM`
export ACR_NAME=$(az ml workspace show --query container_registry -o tsv | cut -d'/' -f9-)
# Create subdir "mlflow_context" and set BASE_PATH to it
# <initialize_build_context>
export PARENT_PATH=endpoints/online/custom-container
export BASE_PATH="$PARENT_PATH/mlflow_context"
export ASSET_PATH=endpoints/online/mlflow
rm -rf $BASE_PATH && mkdir $BASE_PATH
# </initialize_build_context>
# Copy model directories, sample-requests, and Dockerfile
# <copy_assets>
cp -r $ASSET_PATH/{lightgbm-iris,sklearn-diabetes} $BASE_PATH
cp $ASSET_PATH/sample-request-*.json $BASE_PATH
cp $PARENT_PATH/mlflow.dockerfile $BASE_PATH/Dockerfile
cp $PARENT_PATH/mlflow-endpoint.yml $BASE_PATH/endpoint.yaml
sed -i "s/{{endpoint_name}}/$ENDPOINT_NAME/g;" $BASE_PATH/endpoint.yaml
# </copy_assets>
# Create two deployment yamls, store paths in SKLEARN_DEPLOYMENT and LIGHTGBM_DEPLOYMENT
# <make_deployment_yamls>
make_deployment_yaml () {
DEPLOYMENT_ENV=$1
MODEL_NAME=$2
export ${DEPLOYMENT_ENV}="$BASE_PATH/mlflow-deployment-$MODEL_NAME.yaml"
cp $PARENT_PATH/mlflow-deployment.yml ${!DEPLOYMENT_ENV}
sed -i "s/{{acr_name}}/$ACR_NAME/g;\
s/{{endpoint_name}}/$ENDPOINT_NAME/g;\
s/{{environment_name}}/mlflow-cc-$MODEL_NAME-env/g;\
s/{{model_name}}/$MODEL_NAME/g;\
s/{{deployment_name}}/$MODEL_NAME/g;" ${!DEPLOYMENT_ENV}
}
make_deployment_yaml SKLEARN_DEPLOYMENT sklearn-diabetes
make_deployment_yaml LIGHTGBM_DEPLOYMENT lightgbm-iris
#</make_deployment_yaml>
# <login_to_acr>
az acr login -n ${ACR_NAME}
# </login_to_acr>
# <build_with_acr>
az acr build --build-arg MLFLOW_MODEL_NAME=sklearn-diabetes -t azureml-examples/mlflow-cc-sklearn-diabetes:latest -r $ACR_NAME $BASE_PATH
az acr build --build-arg MLFLOW_MODEL_NAME=lightgbm-iris -t azureml-examples/mlflow-cc-lightgbm-iris:latest -r $ACR_NAME $BASE_PATH
# </build_with_acr>
# <create_endpoint>
az ml online-endpoint create -f $BASE_PATH/endpoint.yaml
# </create_endpoint>
endpoint_status=`az ml online-endpoint show --name $ENDPOINT_NAME --query "provisioning_state" -o tsv`
echo $endpoint_status
if [[ $endpoint_status == "Succeeded" ]]
then
echo "Endpoint created successfully"
else
echo "Endpoint creation failed"
exit 1
fi
# <create_deployments>
az ml online-deployment create -f $SKLEARN_DEPLOYMENT
az ml online-deployment create -f $LIGHTGBM_DEPLOYMENT
# </create_deployments>
# <check_deploy_status>
az ml online-deployment show --endpoint-name $ENDPOINT_NAME --name sklearn-diabetes
az ml online-deployment show --endpoint-name $ENDPOINT_NAME --name lightgbm-iris
# </check_deploy_status>
check_deployment_status () {
deploy_name=$1
deploy_status=`az ml online-deployment show --endpoint-name $ENDPOINT_NAME --name $deploy_name --query "provisioning_state" -o tsv`
echo $deploy_status
if [[ $deploy_status == "Succeeded" ]]
then
echo "Deployment $deploy_name completed successfully"
else
echo "Deployment $deploy_name failed"
exit 1
fi
}
check_deployment_status sklearn-diabetes
check_deployment_status lightgbm-iris
# <test_online_endpoints_with_invoke>
az ml online-endpoint invoke -n $ENDPOINT_NAME --deployment-name sklearn-diabetes --request-file "$BASE_PATH/sample-request-sklearn.json"
az ml online-endpoint invoke -n $ENDPOINT_NAME --deployment-name lightgbm-iris --request-file "$BASE_PATH/sample-request-lightgbm.json"
# </test_online_endpoints_with_invoke>
# Get key
echo "Getting access key..."
KEY=$(az ml online-endpoint get-credentials -n $ENDPOINT_NAME --query primaryKey -o tsv)
# Get scoring url
echo "Getting scoring url..."
SCORING_URL=$(az ml online-endpoint show -n $ENDPOINT_NAME --query scoring_uri -o tsv)
echo "Scoring url is $SCORING_URL"
# <test_online_endpoints_with_curl>
curl -H "Authorization: Bearer $KEY" -H "Content-Type: application/json" -H "azureml-model-deployment: sklearn-diabetes" -d @"$BASE_PATH/sample-request-sklearn.json" $SCORING_URL
curl -H "Authorization: Bearer $KEY" -H "Content-Type: application/json" -H "azureml-model-deployment: lightgbm-iris" -d @"$BASE_PATH/sample-request-lightgbm.json" $SCORING_URL
# </test_online_endpoints_with_curl>
# <delete_online_endpoint>
az ml online-endpoint delete -y -n $ENDPOINT_NAME
# </delete_online_endpoint>
#rm -rf $BASE_PATH