forked from cocktailpeanut/dalai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
llama.js
148 lines (139 loc) · 5.13 KB
/
llama.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
const path = require('path');
const term = require( 'terminal-kit' ).terminal;
const git = require('isomorphic-git');
const Downloader = require("nodejs-file-downloader");
const http = require('isomorphic-git/http/node');
const os = require('os');
const fs = require("fs");
const platform = os.platform()
class LLaMA {
constructor(root) {
this.root = root
this.home = path.resolve(this.root.home, "llama")
this.url = "https://github.com/ggerganov/llama.cpp.git"
}
async make() {
console.log("make")
let success
if (platform === "win32") {
// CMake on Windows
const venv_path = path.join(this.root.home, "venv")
const cmake_path = path.join(venv_path, "Scripts", "cmake")
await this.root.exec("mkdir build", this.home)
await this.root.exec(`Remove-Item -path ${path.resolve(this.home, "build", "CMakeCache.txt")}`, this.home)
await this.root.exec(`${cmake_path} ..`, path.resolve(this.home, "build"))
await this.root.exec(`${cmake_path} --build . --config Release`, path.resolve(this.home, "build"))
} else {
// Make on linux + mac
success = await this.root.exec(`make`, this.home)
if (!success) {
throw new Error("running 'make' failed")
return
}
}
}
async add (...models) {
if (models.length === 0) models = ["7B"]
models = models.map((m) => {
return m.toUpperCase()
})
for(let model of models) {
if (!["7B", "13B", "30B", "65B"].includes(model)) {
console.log(`##########################################################
#
# ERROR
# The arguments must be one or more of the following:
#
# 7B, 13B, 30B, 65B
#
##########################################################
[Example]
# install just 7B (default)
npx dalai install
# install 7B manually
npx dalai install 7B
# install 7B and 13B
npx dalai install 7B 13B
`)
throw new Error("The model name must be one of: 7B, 13B, 30B, and 65B")
return
}
}
const venv_path = path.join(this.root.home, "venv")
const python_path = platform == "win32" ? path.join(venv_path, "Scripts", "python.exe") : path.join(venv_path, 'bin', 'python')
/**************************************************************************************************************
*
* 5. Download models + convert + quantize
*
**************************************************************************************************************/
for(let model of models) {
await this.download(model)
const outputFile = path.resolve(this.home, 'models', model, 'ggml-model-f16.bin')
// if (fs.existsSync(outputFile)) {
// console.log(`Skip conversion, file already exists: ${outputFile}`)
// } else {
await this.root.exec(`${python_path} convert-pth-to-ggml.py models/${model}/ 1`, this.home)
// }
await this.quantize(model)
}
}
async quantize(model) {
let num = {
"7B": 1,
"13B": 2,
"30B": 4,
"65B": 8,
}
for(let i=0; i<num[model]; i++) {
const suffix = (i === 0 ? "" : `.${i}`)
const outputFile1 = path.resolve(this.home, `./models/${model}/ggml-model-f16.bin${suffix}`)
const outputFile2 = path.resolve(this.home, `./models/${model}/ggml-model-q4_0.bin${suffix}`)
if (fs.existsSync(outputFile1) && fs.existsSync(outputFile2)) {
console.log(`Skip quantization, files already exists: ${outputFile1} and ${outputFile2}}`)
continue
}
const bin_path = platform === "win32" ? path.resolve(this.home, "build", "Release") : this.home
await this.root.exec(`./quantize ${outputFile1} ${outputFile2} 2`, bin_path)
}
}
async download(model) {
console.log(`Download model ${model}`)
const venv_path = path.join(this.root.home, "venv")
const python_path = platform == "win32" ? path.join(venv_path, "Scripts", "python.exe") : path.join(venv_path, 'bin', 'python')
const num = {
"7B": 1,
"13B": 2,
"30B": 4,
"65B": 8,
}
const files = ["checklist.chk", "params.json"]
for(let i=0; i<num[model]; i++) {
files.push(`consolidated.0${i}.pth`)
}
const resolvedPath = path.resolve(this.home, "models", model)
await fs.promises.mkdir(resolvedPath, { recursive: true }).catch((e) => { })
for(let file of files) {
// if (fs.existsSync(path.resolve(resolvedPath, file))) {
// console.log(`Skip file download, it already exists: ${file}`)
// continue;
// }
const url = `https://agi.gpt4.org/llama/LLaMA/${model}/${file}`
await this.root.down(url, path.resolve(resolvedPath, file), {
"User-Agent": "Mozilla/5.0"
})
}
const files2 = ["tokenizer_checklist.chk", "tokenizer.model"]
for(let file of files2) {
// if (fs.existsSync(path.resolve(this.home, "models", file))) {
// console.log(`Skip file download, it already exists: ${file}`)
// continue;
// }
const url = `https://agi.gpt4.org/llama/LLaMA/${file}`
const dir = path.resolve(this.home, "models")
await this.root.down(url, path.resolve(dir, file), {
"User-Agent": "Mozilla/5.0"
})
}
}
}
module.exports = LLaMA