In this paper, we propose a WiFi-enabled device-free adaptive gesture recognition scheme, WiADG, that is able to identify human gestures accurately and consistently under environmental dynamics via adversarial domain adaptation. (link)
- Python3
- Pytorch (1.1.0 Recommended)
- Train the source encoder and classifier
python train_src.py
- Test the source on the target dataset
python test_src.py
- Train the target encoder
python train_adapt.py
- Test the target encoder with source classifier on the target dataset
python test_tgt.py
Method | Conf room --> Office | Office --> Conf room |
---|---|---|
Source-only | 49.7% | 32.7% |
Target-only | 96.7% | 93.0% |
WiADG (Ours) | 83.3% | 66.6% |
@inproceedings{zou2018robust,
title={Robust wifi-enabled device-free gesture recognition via unsupervised adversarial domain adaptation},
author={Zou, Han and Yang, Jianfei and Zhou, Yuxun and Xie, Lihua and Spanos, Costas J},
booktitle={2018 27th International Conference on Computer Communication and Networks (ICCCN)},
pages={1--8},
year={2018},
organization={IEEE},
doi={10.1109/ICCCN.2018.8487345}
}