-
Notifications
You must be signed in to change notification settings - Fork 7
/
quantitative_experiments.py
127 lines (103 loc) · 4.64 KB
/
quantitative_experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from itertools import product
import json
import math
import multiprocessing as mp
import os
from collections import defaultdict
from functools import partial
from pathlib import Path
from typing import Dict, List, Union
import numpy as np
import torch
from loguru import logger
from tap import Tap
from tqdm import tqdm
from Levenshtein import distance as levenshtein_distance
from main_tile_pattern import compute_prob, pattern_key
class QuantitativeExperimentArgs(Tap):
run_dir: str
output_dir: str
metrics: List[str] = ["levenshtein", "tpkldiv"]
tpkldiv_pattern_sizes: List[int] = [5, 10]
tpkldiv_weight: float = 0.5
def process_args(self) -> None:
super().process_args()
os.makedirs(self.output_dir, exist_ok=True)
def compute_levenshtein(real: np.ndarray, generated: List[np.ndarray]):
generated_str = ["".join(gen.flatten().astype(str)) for gen in generated]
distances = [levenshtein_distance(gen_str_1, gen_str_2)
for gen_str_1, gen_str_2 in product(generated_str, generated_str)]
return np.mean(distances), np.var(distances)
def compute_tpkldiv(real: np.ndarray, generated: List[np.ndarray], pattern_sizes: List[int], weight: float):
dists = defaultdict(list)
for pattern_size in pattern_sizes:
logger.info("Computing TP KL-Div for patterns of size {}", pattern_size)
real_pattern_counts = compute_pattern_counts([real], pattern_size)
generated_pattern_counts = compute_pattern_counts(
generated, pattern_size)
num_patterns = sum(real_pattern_counts.values())
num_test_patterns = sum(generated_pattern_counts.values())
logger.info(
"Found {} patterns and {} test patterns", num_patterns, num_test_patterns
)
kl_divergence = 0
for pattern, count in tqdm(generated_pattern_counts.items()):
prob_p = compute_prob(count, num_patterns)
prob_q = compute_prob(
generated_pattern_counts[pattern], num_test_patterns)
kl_divergence += weight * prob_p * math.log(prob_p / prob_q) + (
1 - weight
) * prob_q * math.log(prob_q / prob_p)
dists[pattern_size].append(kl_divergence)
mean_tpkldiv: Dict[int, float] = {k: np.mean(v) for k, v in dists.items()}
var_tpkldiv: Dict[int, float] = {k: np.var(v) for k, v in dists.items()}
return mean_tpkldiv, var_tpkldiv
def get_pattern_counts(level: np.ndarray, pattern_size: int):
pattern_counts = defaultdict(int)
for up in range(level.shape[0] - pattern_size + 1):
for left in range(level.shape[1] - pattern_size + 1):
for inside in range(level.shape[2] - pattern_size + 1):
down = up + pattern_size
right = left + pattern_size
outside = inside + pattern_size
level_slice = level[up:down, left:right, inside:outside]
pattern_counts[pattern_key(level_slice)] += 1
return pattern_counts
def compute_pattern_counts(levels: List[np.ndarray], pattern_size: int):
with mp.Pool() as pool:
counts_per_level = pool.map(
partial(get_pattern_counts, pattern_size=pattern_size), levels,
)
pattern_counts = defaultdict(int)
for counts in counts_per_level:
for pattern, count in counts.items():
pattern_counts[pattern] += count
return pattern_counts
def load_level(path: Union[str, Path]) -> np.ndarray:
return torch.load(str(path))
def load_levels(run_dir: str):
samples_path = Path(run_dir).joinpath("random_samples")
real = load_level(samples_path.joinpath("real_bdata.pt"))
generated = [load_level(str(path)) for path in
samples_path.joinpath("torch_blockdata").glob("*.pt")]
logger.info("Found {} levels in {}", len(generated), run_dir)
return real, generated
def write_results(output_dir: str, results: Dict):
with open(os.path.join(output_dir, "random_samples", "results.json"), "w") as f:
json.dump(results, f)
def main():
args = QuantitativeExperimentArgs().parse_args()
real, generated = load_levels(args.run_dir)
results = dict()
if "tpkldiv" in args.metrics:
mean_tpkldiv, var_tpkldiv = compute_tpkldiv(
real, generated, args.tpkldiv_pattern_sizes, args.tpkldiv_weight)
results["tpkldiv"] = {"mean": mean_tpkldiv, "var": var_tpkldiv}
if "levenshtein" in args.metrics:
mean_levenshtein, var_levenshtein = compute_levenshtein(
real, generated)
results["levenshtein"] = {
"mean": mean_levenshtein, "var": var_levenshtein}
write_results(args.output_dir, results)
if __name__ == "__main__":
main()