-
Notifications
You must be signed in to change notification settings - Fork 18
/
train_BDCN_edge.py
221 lines (197 loc) · 9.73 KB
/
train_BDCN_edge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
import torch
from tqdm import tqdm
from utils.lr_scheduler import LR_Scheduler
from dataloaders.datasets.bsds_hd5_dim1 import Mydataset
from torch.utils.data import DataLoader
from my_options.BDCN_options import BDCN_Options
from modeling.BDCN_edge import BDCN
from modeling.sync_batchnorm.replicate import patch_replication_callback
from utils.edge_loss2 import *
from utils.bdcn_loss import bdcn_loss_edge
from utils.saver import Saver
from utils.summaries import TensorboardSummary
import scipy.io as sio
import time
import re
from torch.optim import lr_scheduler
from os.path import join, split, isdir, isfile, splitext, split, abspath, dirname
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
class Trainer(object):
def __init__(self, args):
self.args = args
# Define Saver
self.saver = Saver(args)
self.saver.save_experiment_config()
# Define Tensorboard Summary
self.summary = TensorboardSummary(self.saver.experiment_dir)
self.writer = self.summary.create_summary()
print(self.saver.experiment_dir)
self.output_dir = os.path.join(self.saver.experiment_dir)
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
# Define Dataloader
self.train_dataset = Mydataset(root_path=self.args.data_path, split='trainval', crop_size=self.args.crop_size)
self.test_dataset = Mydataset(root_path=self.args.data_path, split='test', crop_size=self.args.crop_size)
self.train_loader = DataLoader(self.train_dataset, batch_size=self.args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, drop_last=True)
self.test_loader = DataLoader(self.test_dataset, batch_size=1, shuffle=False,
num_workers=args.workers)
# Define network
self.model = BDCN(self.args.pretrain_model)
self.model.cuda()
if args.resume:
if isfile(args.resume):
print("=> loading checkpoint '{}'".format(self.args.resume))
checkpoint = torch.load(self.args.resume)
self.model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}'"
.format(args.resume))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# tune lr
params_dict = dict(self.model.named_parameters())
base_lr = args.lr
weight_decay = args.weight_decay
params = []
for key, v in params_dict.items():
if re.match(r'conv[1-5]_[1-3]_down', key):
if 'weight' in key:
params += [{'params': v, 'lr': base_lr * 0.1, 'weight_decay': weight_decay * 1, 'name': key}]
elif 'bias' in key:
params += [{'params': v, 'lr': base_lr * 0.2, 'weight_decay': weight_decay * 0, 'name': key}]
elif re.match(r'.*conv[1-4]_[1-3]', key):
if 'weight' in key:
params += [{'params': v, 'lr': base_lr * 1, 'weight_decay': weight_decay * 1, 'name': key}]
elif 'bias' in key:
params += [{'params': v, 'lr': base_lr * 2, 'weight_decay': weight_decay * 0, 'name': key}]
elif re.match(r'.*conv5_[1-3]', key):
if 'weight' in key:
params += [{'params': v, 'lr': base_lr * 100, 'weight_decay': weight_decay * 1, 'name': key}]
elif 'bias' in key:
params += [{'params': v, 'lr': base_lr * 200, 'weight_decay': weight_decay * 0, 'name': key}]
elif re.match(r'score_dsn[1-5]', key):
if 'weight' in key:
params += [{'params': v, 'lr': base_lr * 0.01, 'weight_decay': weight_decay * 1, 'name': key}]
elif 'bias' in key:
params += [{'params': v, 'lr': base_lr * 0.02, 'weight_decay': weight_decay * 0, 'name': key}]
elif re.match(r'upsample_[248](_5)?', key):
if 'weight' in key:
params += [{'params': v, 'lr': base_lr * 0, 'weight_decay': weight_decay * 0, 'name': key}]
elif 'bias' in key:
params += [{'params': v, 'lr': base_lr * 0, 'weight_decay': weight_decay * 0, 'name': key}]
elif re.match(r'.*msblock[1-5]_[1-3]\.conv', key):
if 'weight' in key:
params += [{'params': v, 'lr': base_lr * 1, 'weight_decay': weight_decay * 1, 'name': key}]
elif 'bias' in key:
params += [{'params': v, 'lr': base_lr * 2, 'weight_decay': weight_decay * 0, 'name': key}]
else:
if 'weight' in key:
params += [{'params': v, 'lr': base_lr * 0.001, 'weight_decay': weight_decay * 1, 'name': key}]
elif 'bias' in key:
params += [{'params': v, 'lr': base_lr * 0.002, 'weight_decay': weight_decay * 0, 'name': key}]
self.optimizer = torch.optim.SGD(params, momentum=self.args.momentum,
lr=self.args.lr, weight_decay=self.args.weight_decay)
# Define lr scheduler
self.scheduler = LR_Scheduler(self.args.lr_scheduler, self.args.lr,
args.epochs, len(self.train_loader))
# Resuming checkpoint
self.best_pred = 0.0
if args.resume is not None:
if not os.path.isfile(args.resume):
raise RuntimeError("=> no checkpoint found at '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
if args.cuda:
self.model.module.load_state_dict(checkpoint['state_dict'])
else:
self.model.load_state_dict(checkpoint['state_dict'])
if not args.ft:
self.optimizer.load_state_dict(checkpoint['optimizer'])
self.best_pred = checkpoint['best_pred']
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
def training(self, epoch):
train_loss = 0.0
self.model.train()
tbar = tqdm(self.train_loader)
num_img_tr = len(self.train_loader)
batch_size = self.args.batch_size
for i, (image, target) in enumerate(tbar):
if self.args.cuda:
image, target = image.cuda(), target.cuda() #(b,3,w,h) (b,1,w,h)
target = target.unsqueeze(1)
out = self.model(image)
loss = 0
for k in range(10):
loss += self.args.side_weight * bdcn_loss_edge(out[k], target, self.args.cuda,
self.args.balance) / batch_size
loss += self.args.fuse_weight * bdcn_loss_edge(out[-1], target, self.args.cuda, self.args.balance) / batch_size
self.scheduler(self.optimizer, i, epoch, self.best_pred)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
train_loss += loss.item()
tbar.set_description('Train loss: %.3f' % (train_loss / (i + 1)))
print('[Epoch: %d, numImages: %5d]' % (epoch, i * self.args.batch_size + image.data.shape[0]))
print('Loss: %.3f' % train_loss)
if self.args.no_val:
# save checkpoint every epoch
if (epoch + 1) % 10 == 0:
is_best = False
self.saver.save_checkpoint({
'epoch': epoch + 1,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'best_pred': self.best_pred,
}, is_best)
def test(self,epoch):
print('Test epoch: %d' % epoch)
self.output_dir = os.path.join(self.saver.experiment_dir, str(epoch+1), 'mat')
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
self.model.eval()
tbar = tqdm(self.test_loader, desc='\r')
for i, image in enumerate(tbar):
name = self.test_loader.dataset.images_name[i]
if self.args.cuda:
image = image.cuda()
with torch.no_grad():
output_list = self.model(image)
pred = output_list[-1]
pred = pred.squeeze()
pred = pred.data.cpu().numpy()
sio.savemat(os.path.join(self.output_dir, '{}.mat'.format(name)), {'result': pred})
def main():
options = BDCN_Options()
args = options.parse()
args.cuda = True
#args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args.cuda)
if args.cuda:
try:
args.gpu_ids = [int(s) for s in args.gpu_ids.split(',')]
except ValueError:
raise ValueError('Argument --gpu_ids must be a comma-separated list of integers only')
if args.sync_bn is None:
if args.cuda and len(args.gpu_ids) > 1:
args.sync_bn = True
else:
args.sync_bn = False
print(args)
torch.manual_seed(args.seed)
trainer = Trainer(args)
print('Starting Epoch:', trainer.args.start_epoch)
print('Total Epoches:', trainer.args.epochs)
for epoch in range(trainer.args.start_epoch, trainer.args.epochs):
trainer.training(epoch)
if (epoch + 1) % 10 == 0:
trainer.test(epoch)
def adjust_learning_rate(optimizer, steps, step_size, gamma=0.1, logger=None):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr'] * gamma
if logger:
logger.info('%s: %s' % (param_group['name'], param_group['lr']))
if __name__ == "__main__":
main()