-
Notifications
You must be signed in to change notification settings - Fork 2k
/
controlnet.py
1054 lines (881 loc) · 47.6 KB
/
controlnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import gc
import os
import logging
from collections import OrderedDict
from copy import copy
from typing import Dict, Optional, Tuple
import modules.scripts as scripts
from modules import shared, devices, script_callbacks, processing, masking, images
import gradio as gr
from einops import rearrange
from scripts import global_state, hook, external_code, processor, batch_hijack, controlnet_version, utils
from scripts.controlnet_ui import controlnet_ui_group
from scripts.cldm import PlugableControlModel
from scripts.processor import *
from scripts.adapter import PlugableAdapter
from scripts.utils import load_state_dict, get_unique_axis0
from scripts.hook import ControlParams, UnetHook, ControlModelType
from scripts.controlnet_ui.controlnet_ui_group import ControlNetUiGroup, UiControlNetUnit
from scripts.logging import logger
from modules.processing import StableDiffusionProcessingImg2Img, StableDiffusionProcessingTxt2Img
from modules.images import save_image
import cv2
import numpy as np
import torch
from pathlib import Path
from PIL import Image, ImageFilter, ImageOps
from scripts.lvminthin import lvmin_thin, nake_nms
from scripts.processor import model_free_preprocessors
gradio_compat = True
try:
from distutils.version import LooseVersion
from importlib_metadata import version
if LooseVersion(version("gradio")) < LooseVersion("3.10"):
gradio_compat = False
except ImportError:
pass
# Gradio 3.32 bug fix
import tempfile
gradio_tempfile_path = os.path.join(tempfile.gettempdir(), 'gradio')
os.makedirs(gradio_tempfile_path, exist_ok=True)
def find_closest_lora_model_name(search: str):
if not search:
return None
if search in global_state.cn_models:
return search
search = search.lower()
if search in global_state.cn_models_names:
return global_state.cn_models_names.get(search)
applicable = [name for name in global_state.cn_models_names.keys()
if search in name.lower()]
if not applicable:
return None
applicable = sorted(applicable, key=lambda name: len(name))
return global_state.cn_models_names[applicable[0]]
def swap_img2img_pipeline(p: processing.StableDiffusionProcessingImg2Img):
p.__class__ = processing.StableDiffusionProcessingTxt2Img
dummy = processing.StableDiffusionProcessingTxt2Img()
for k,v in dummy.__dict__.items():
if hasattr(p, k):
continue
setattr(p, k, v)
global_state.update_cn_models()
def image_dict_from_any(image) -> Optional[Dict[str, np.ndarray]]:
if image is None:
return None
if isinstance(image, (tuple, list)):
image = {'image': image[0], 'mask': image[1]}
elif not isinstance(image, dict):
image = {'image': image, 'mask': None}
else: # type(image) is dict
# copy to enable modifying the dict and prevent response serialization error
image = dict(image)
if isinstance(image['image'], str):
if os.path.exists(image['image']):
image['image'] = np.array(Image.open(image['image'])).astype('uint8')
elif image['image']:
image['image'] = external_code.to_base64_nparray(image['image'])
else:
image['image'] = None
# If there is no image, return image with None image and None mask
if image['image'] is None:
image['mask'] = None
return image
if isinstance(image['mask'], str):
if os.path.exists(image['mask']):
image['mask'] = np.array(Image.open(image['mask'])).astype('uint8')
elif image['mask']:
image['mask'] = external_code.to_base64_nparray(image['mask'])
else:
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
elif image['mask'] is None:
image['mask'] = np.zeros_like(image['image'], dtype=np.uint8)
return image
def image_has_mask(input_image: np.ndarray) -> bool:
"""
Determine if an image has an alpha channel (mask) that is not empty.
The function checks if the input image has three dimensions (height, width, channels),
and if the third dimension (channel dimension) is of size 4 (presumably RGB + alpha).
Then it checks if the maximum value in the alpha channel is greater than 127. This is
presumably to check if there is any non-transparent (or semi-transparent) pixel in the
image. A pixel is considered non-transparent if its alpha value is above 127.
Args:
input_image (np.ndarray): A 3D numpy array representing an image. The dimensions
should represent [height, width, channels].
Returns:
bool: True if the image has a non-empty alpha channel, False otherwise.
"""
return (
input_image.ndim == 3 and
input_image.shape[2] == 4 and
np.max(input_image[:, :, 3]) > 127
)
def prepare_mask(
mask: Image.Image, p: processing.StableDiffusionProcessing
) -> Image.Image:
"""
Prepare an image mask for the inpainting process.
This function takes as input a PIL Image object and an instance of the
StableDiffusionProcessing class, and performs the following steps to prepare the mask:
1. Convert the mask to grayscale (mode "L").
2. If the 'inpainting_mask_invert' attribute of the processing instance is True,
invert the mask colors.
3. If the 'mask_blur' attribute of the processing instance is greater than 0,
apply a Gaussian blur to the mask with a radius equal to 'mask_blur'.
Args:
mask (Image.Image): The input mask as a PIL Image object.
p (processing.StableDiffusionProcessing): An instance of the StableDiffusionProcessing class
containing the processing parameters.
Returns:
mask (Image.Image): The prepared mask as a PIL Image object.
"""
mask = mask.convert("L")
if getattr(p, "inpainting_mask_invert", False):
mask = ImageOps.invert(mask)
if getattr(p, "mask_blur", 0) > 0:
mask = mask.filter(ImageFilter.GaussianBlur(p.mask_blur))
return mask
def set_numpy_seed(p: processing.StableDiffusionProcessing) -> Optional[int]:
"""
Set the random seed for NumPy based on the provided parameters.
Args:
p (processing.StableDiffusionProcessing): The instance of the StableDiffusionProcessing class.
Returns:
Optional[int]: The computed random seed if successful, or None if an exception occurs.
This function sets the random seed for NumPy using the seed and subseed values from the given instance of
StableDiffusionProcessing. If either seed or subseed is -1, it uses the first value from `all_seeds`.
Otherwise, it takes the maximum of the provided seed value and 0.
The final random seed is computed by adding the seed and subseed values, applying a bitwise AND operation
with 0xFFFFFFFF to ensure it fits within a 32-bit integer.
"""
try:
tmp_seed = int(p.all_seeds[0] if p.seed == -1 else max(int(p.seed), 0))
tmp_subseed = int(p.all_seeds[0] if p.subseed == -1 else max(int(p.subseed), 0))
seed = (tmp_seed + tmp_subseed) & 0xFFFFFFFF
np.random.seed(seed)
return seed
except Exception as e:
logger.warning(e)
logger.warning('Warning: Failed to use consistent random seed.')
return None
class Script(scripts.Script, metaclass=(
utils.TimeMeta if logger.level == logging.DEBUG else type)):
model_cache = OrderedDict()
def __init__(self) -> None:
super().__init__()
self.latest_network = None
self.preprocessor = global_state.cache_preprocessors(global_state.cn_preprocessor_modules)
self.unloadable = global_state.cn_preprocessor_unloadable
self.input_image = None
self.latest_model_hash = ""
self.enabled_units = []
self.detected_map = []
self.post_processors = []
batch_hijack.instance.process_batch_callbacks.append(self.batch_tab_process)
batch_hijack.instance.process_batch_each_callbacks.append(self.batch_tab_process_each)
batch_hijack.instance.postprocess_batch_each_callbacks.insert(0, self.batch_tab_postprocess_each)
batch_hijack.instance.postprocess_batch_callbacks.insert(0, self.batch_tab_postprocess)
def title(self):
return "ControlNet"
def show(self, is_img2img):
return scripts.AlwaysVisible
@staticmethod
def get_default_ui_unit(is_ui=True):
cls = UiControlNetUnit if is_ui else external_code.ControlNetUnit
return cls(
enabled=False,
module="none",
model="None"
)
def uigroup(self, tabname: str, is_img2img: bool, elem_id_tabname: str):
group = ControlNetUiGroup(
gradio_compat,
self.infotext_fields,
Script.get_default_ui_unit(),
self.preprocessor,
)
group.render(tabname, elem_id_tabname)
group.register_callbacks(is_img2img)
return group.render_and_register_unit(tabname, is_img2img)
def ui(self, is_img2img):
"""this function should create gradio UI elements. See https://gradio.app/docs/#components
The return value should be an array of all components that are used in processing.
Values of those returned components will be passed to run() and process() functions.
"""
self.infotext_fields = []
self.paste_field_names = []
controls = ()
max_models = shared.opts.data.get("control_net_max_models_num", 1)
elem_id_tabname = ("img2img" if is_img2img else "txt2img") + "_controlnet"
with gr.Group(elem_id=elem_id_tabname):
with gr.Accordion(f"ControlNet {controlnet_version.version_flag}", open = False, elem_id="controlnet"):
if max_models > 1:
with gr.Tabs(elem_id=f"{elem_id_tabname}_tabs"):
for i in range(max_models):
with gr.Tab(f"ControlNet Unit {i}",
elem_classes=['cnet-unit-tab']):
controls += (self.uigroup(f"ControlNet-{i}", is_img2img, elem_id_tabname),)
else:
with gr.Column():
controls += (self.uigroup(f"ControlNet", is_img2img, elem_id_tabname),)
if shared.opts.data.get("control_net_sync_field_args", False):
for _, field_name in self.infotext_fields:
self.paste_field_names.append(field_name)
return controls
@staticmethod
def clear_control_model_cache():
Script.model_cache.clear()
gc.collect()
devices.torch_gc()
@staticmethod
def load_control_model(p, unet, model, lowvram):
if model in Script.model_cache:
logger.info(f"Loading model from cache: {model}")
return Script.model_cache[model]
# Remove model from cache to clear space before building another model
if len(Script.model_cache) > 0 and len(Script.model_cache) >= shared.opts.data.get("control_net_model_cache_size", 2):
Script.model_cache.popitem(last=False)
gc.collect()
devices.torch_gc()
model_net = Script.build_control_model(p, unet, model, lowvram)
if shared.opts.data.get("control_net_model_cache_size", 2) > 0:
Script.model_cache[model] = model_net
return model_net
@staticmethod
def build_control_model(p, unet, model, lowvram):
if model is None or model == 'None':
raise RuntimeError(f"You have not selected any ControlNet Model.")
model_path = global_state.cn_models.get(model, None)
if model_path is None:
model = find_closest_lora_model_name(model)
model_path = global_state.cn_models.get(model, None)
if model_path is None:
raise RuntimeError(f"model not found: {model}")
# trim '"' at start/end
if model_path.startswith("\"") and model_path.endswith("\""):
model_path = model_path[1:-1]
if not os.path.exists(model_path):
raise ValueError(f"file not found: {model_path}")
logger.info(f"Loading model: {model}")
state_dict = load_state_dict(model_path)
network_module = PlugableControlModel
network_config = shared.opts.data.get("control_net_model_config", global_state.default_conf)
if not os.path.isabs(network_config):
network_config = os.path.join(global_state.script_dir, network_config)
if any([k.startswith("body.") or k == 'style_embedding' for k, v in state_dict.items()]):
# adapter model
network_module = PlugableAdapter
network_config = shared.opts.data.get("control_net_model_adapter_config", global_state.default_conf_adapter)
if not os.path.isabs(network_config):
network_config = os.path.join(global_state.script_dir, network_config)
model_path = os.path.abspath(model_path)
model_stem = Path(model_path).stem
model_dir_name = os.path.dirname(model_path)
possible_config_filenames = [
os.path.join(model_dir_name, model_stem + ".yaml"),
os.path.join(global_state.script_dir, 'models', model_stem + ".yaml"),
os.path.join(model_dir_name, model_stem.replace('_fp16', '') + ".yaml"),
os.path.join(global_state.script_dir, 'models', model_stem.replace('_fp16', '') + ".yaml"),
os.path.join(model_dir_name, model_stem.replace('_diff', '') + ".yaml"),
os.path.join(global_state.script_dir, 'models', model_stem.replace('_diff', '') + ".yaml"),
os.path.join(model_dir_name, model_stem.replace('-fp16', '') + ".yaml"),
os.path.join(global_state.script_dir, 'models', model_stem.replace('-fp16', '') + ".yaml"),
os.path.join(model_dir_name, model_stem.replace('-diff', '') + ".yaml"),
os.path.join(global_state.script_dir, 'models', model_stem.replace('-diff', '') + ".yaml")
]
override_config = possible_config_filenames[0]
for possible_config_filename in possible_config_filenames:
if os.path.exists(possible_config_filename):
override_config = possible_config_filename
break
if 'v11' in model_stem.lower() or 'shuffle' in model_stem.lower():
assert os.path.exists(override_config), f'Error: The model config {override_config} is missing. ControlNet 1.1 must have configs.'
if os.path.exists(override_config):
network_config = override_config
else:
# Note: This error is triggered in unittest, but not caught.
# TODO: Replace `print` with `logger.error`.
print(f'ERROR: ControlNet cannot find model config [{override_config}] \n'
f'ERROR: ControlNet will use a WRONG config [{network_config}] to load your model. \n'
f'ERROR: The WRONG config may not match your model. The generated results can be bad. \n'
f'ERROR: You are using a ControlNet model [{model_stem}] without correct YAML config file. \n'
f'ERROR: The performance of this model may be worse than your expectation. \n'
f'ERROR: If this model cannot get good results, the reason is that you do not have a YAML file for the model. \n'
f'Solution: Please download YAML file, or ask your model provider to provide [{override_config}] for you to download.\n'
f'Hint: You can take a look at [{os.path.join(global_state.script_dir, "models")}] to find many existing YAML files.\n')
logger.info(f"Loading config: {network_config}")
network = network_module(
state_dict=state_dict,
config_path=network_config,
lowvram=lowvram,
base_model=unet,
)
network.to(p.sd_model.device, dtype=p.sd_model.dtype)
logger.info(f"ControlNet model {model} loaded.")
return network
@staticmethod
def get_remote_call(p, attribute, default=None, idx=0, strict=False, force=False):
if not force and not shared.opts.data.get("control_net_allow_script_control", False):
return default
def get_element(obj, strict=False):
if not isinstance(obj, list):
return obj if not strict or idx == 0 else None
elif idx < len(obj):
return obj[idx]
else:
return None
attribute_value = get_element(getattr(p, attribute, None), strict)
default_value = get_element(default)
return attribute_value if attribute_value is not None else default_value
@staticmethod
def parse_remote_call(p, unit: external_code.ControlNetUnit, idx):
selector = Script.get_remote_call
unit.enabled = selector(p, "control_net_enabled", unit.enabled, idx, strict=True)
unit.module = selector(p, "control_net_module", unit.module, idx)
unit.model = selector(p, "control_net_model", unit.model, idx)
unit.weight = selector(p, "control_net_weight", unit.weight, idx)
unit.image = selector(p, "control_net_image", unit.image, idx)
unit.resize_mode = selector(p, "control_net_resize_mode", unit.resize_mode, idx)
unit.low_vram = selector(p, "control_net_lowvram", unit.low_vram, idx)
unit.processor_res = selector(p, "control_net_pres", unit.processor_res, idx)
unit.threshold_a = selector(p, "control_net_pthr_a", unit.threshold_a, idx)
unit.threshold_b = selector(p, "control_net_pthr_b", unit.threshold_b, idx)
unit.guidance_start = selector(p, "control_net_guidance_start", unit.guidance_start, idx)
unit.guidance_end = selector(p, "control_net_guidance_end", unit.guidance_end, idx)
# Backward compatibility. See https://github.com/Mikubill/sd-webui-controlnet/issues/1740
# for more details.
unit.guidance_end = selector(p, "control_net_guidance_strength", unit.guidance_end, idx)
unit.control_mode = selector(p, "control_net_control_mode", unit.control_mode, idx)
unit.pixel_perfect = selector(p, "control_net_pixel_perfect", unit.pixel_perfect, idx)
return unit
@staticmethod
def detectmap_proc(detected_map, module, resize_mode, h, w):
if 'inpaint' in module:
detected_map = detected_map.astype(np.float32)
else:
detected_map = HWC3(detected_map)
def safe_numpy(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = y.copy()
y = np.ascontiguousarray(y)
y = y.copy()
return y
def get_pytorch_control(x):
# A very safe method to make sure that Apple/Mac works
y = x
# below is very boring but do not change these. If you change these Apple or Mac may fail.
y = torch.from_numpy(y)
y = y.float() / 255.0
y = rearrange(y, 'h w c -> 1 c h w')
y = y.clone()
y = y.to(devices.get_device_for("controlnet"))
y = y.clone()
return y
def high_quality_resize(x, size):
# Written by lvmin
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
inpaint_mask = None
if x.ndim == 3 and x.shape[2] == 4:
inpaint_mask = x[:, :, 3]
x = x[:, :, 0:3]
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
unique_color_count = len(get_unique_axis0(x.reshape(-1, x.shape[2])))
is_one_pixel_edge = False
is_binary = False
if unique_color_count == 2:
is_binary = np.min(x) < 16 and np.max(x) > 240
if is_binary:
xc = x
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
all_edge_count = np.where(x > 127)[0].shape[0]
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
if 2 < unique_color_count < 200:
interpolation = cv2.INTER_NEAREST
elif new_size_is_smaller:
interpolation = cv2.INTER_AREA
else:
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
y = cv2.resize(x, size, interpolation=interpolation)
if inpaint_mask is not None:
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
if is_binary:
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
if is_one_pixel_edge:
y = nake_nms(y)
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = lvmin_thin(y, prunings=new_size_is_bigger)
else:
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
y = np.stack([y] * 3, axis=2)
if inpaint_mask is not None:
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
y = np.concatenate([y, inpaint_mask], axis=2)
return y
if resize_mode == external_code.ResizeMode.RESIZE:
detected_map = high_quality_resize(detected_map, (w, h))
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
old_h, old_w, _ = detected_map.shape
old_w = float(old_w)
old_h = float(old_h)
k0 = float(h) / old_h
k1 = float(w) / old_w
safeint = lambda x: int(np.round(x))
if resize_mode == external_code.ResizeMode.OUTER_FIT:
k = min(k0, k1)
borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
if len(high_quality_border_color) == 4:
# Inpaint hijack
high_quality_border_color[3] = 255
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = detected_map.shape
pad_h = max(0, (h - new_h) // 2)
pad_w = max(0, (w - new_w) // 2)
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
detected_map = high_quality_background
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
else:
k = max(k0, k1)
detected_map = high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
new_h, new_w, _ = detected_map.shape
pad_h = max(0, (new_h - h) // 2)
pad_w = max(0, (new_w - w) // 2)
detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
detected_map = safe_numpy(detected_map)
return get_pytorch_control(detected_map), detected_map
@staticmethod
def get_enabled_units(p):
units = external_code.get_all_units_in_processing(p)
enabled_units = []
if len(units) == 0:
# fill a null group
remote_unit = Script.parse_remote_call(p, Script.get_default_ui_unit(), 0)
if remote_unit.enabled:
units.append(remote_unit)
for idx, unit in enumerate(units):
unit = Script.parse_remote_call(p, unit, idx)
if not unit.enabled:
continue
enabled_units.append(copy(unit))
if len(units) != 1:
log_key = f"ControlNet {idx}"
else:
log_key = "ControlNet"
log_value = {
"preprocessor": unit.module,
"model": unit.model,
"weight": unit.weight,
"starting/ending": str((unit.guidance_start, unit.guidance_end)),
"resize mode": str(unit.resize_mode),
"pixel perfect": str(unit.pixel_perfect),
"control mode": str(unit.control_mode),
"preprocessor params": str((unit.processor_res, unit.threshold_a, unit.threshold_b)),
}
log_value = str(log_value).replace('\'', '').replace('{', '').replace('}', '')
p.extra_generation_params.update({log_key: log_value})
return enabled_units
@staticmethod
def choose_input_image(
p: processing.StableDiffusionProcessing,
unit: external_code.ControlNetUnit,
idx: int
) -> Tuple[np.ndarray, bool]:
""" Choose input image from following sources with descending priority:
- p.image_control: [Deprecated] Lagacy way to pass image to controlnet.
- p.control_net_input_image: [Deprecated] Lagacy way to pass image to controlnet.
- unit.image:
- ControlNet tab input image.
- Input image from API call.
- p.init_images: A1111 img2img tab input image.
Returns:
- The input image in ndarray form.
- Whether input image is from A1111.
"""
image_from_a1111 = False
p_input_image = Script.get_remote_call(p, "control_net_input_image", None, idx)
image = image_dict_from_any(unit.image)
if batch_hijack.instance.is_batch and getattr(p, "image_control", None) is not None:
logger.warning("Warn: Using legacy field 'p.image_control'.")
input_image = HWC3(np.asarray(p.image_control))
elif p_input_image is not None:
logger.warning("Warn: Using legacy field 'p.controlnet_input_image'")
if isinstance(p_input_image, dict) and "mask" in p_input_image and "image" in p_input_image:
color = HWC3(np.asarray(p_input_image['image']))
alpha = np.asarray(p_input_image['mask'])[..., None]
input_image = np.concatenate([color, alpha], axis=2)
else:
input_image = HWC3(np.asarray(p_input_image))
elif image is not None:
while len(image['mask'].shape) < 3:
image['mask'] = image['mask'][..., np.newaxis]
# Need to check the image for API compatibility
if isinstance(image['image'], str):
from modules.api.api import decode_base64_to_image
input_image = HWC3(np.asarray(decode_base64_to_image(image['image'])))
else:
input_image = HWC3(image['image'])
have_mask = 'mask' in image and not ((image['mask'][:, :, 0] == 0).all() or (image['mask'][:, :, 0] == 255).all())
if 'inpaint' in unit.module:
logger.info("using inpaint as input")
color = HWC3(image['image'])
if have_mask:
alpha = image['mask'][:, :, 0:1]
else:
alpha = np.zeros_like(color)[:, :, 0:1]
input_image = np.concatenate([color, alpha], axis=2)
else:
if have_mask:
logger.info("using mask as input")
input_image = HWC3(image['mask'][:, :, 0])
unit.module = 'none' # Always use black bg and white line
else:
# use img2img init_image as default
input_image = getattr(p, "init_images", [None])[0]
if input_image is None:
if batch_hijack.instance.is_batch:
shared.state.interrupted = True
raise ValueError('controlnet is enabled but no input image is given')
input_image = HWC3(np.asarray(input_image))
image_from_a1111 = True
assert isinstance(input_image, np.ndarray)
return input_image, image_from_a1111
@staticmethod
def bound_check_params(unit: external_code.ControlNetUnit) -> None:
"""
Checks and corrects negative parameters in ControlNetUnit 'unit'.
Parameters 'processor_res', 'threshold_a', 'threshold_b' are reset to
their default values if negative.
Args:
unit (external_code.ControlNetUnit): The ControlNetUnit instance to check.
"""
cfg = preprocessor_sliders_config.get(
global_state.get_module_basename(unit.module), [])
defaults = {
param: cfg_default['value']
for param, cfg_default in zip(
("processor_res", 'threshold_a', 'threshold_b'), cfg)
if cfg_default is not None
}
for param, default_value in defaults.items():
value = getattr(unit, param)
if value < 0:
setattr(unit, param, default_value)
logger.warning(f'[{unit.module}.{param}] Invalid value({value}), using default value {default_value}.')
def process(self, p, *args):
"""
This function is called before processing begins for AlwaysVisible scripts.
You can modify the processing object (p) here, inject hooks, etc.
args contains all values returned by components from ui()
"""
sd_ldm = p.sd_model
unet = sd_ldm.model.diffusion_model
setattr(p, 'controlnet_initial_noise_modifier', None)
if self.latest_network is not None:
# always restore (~0.05s)
self.latest_network.restore(unet)
if not batch_hijack.instance.is_batch:
self.enabled_units = Script.get_enabled_units(p)
if len(self.enabled_units) == 0:
self.latest_network = None
return
detected_maps = []
forward_params = []
post_processors = []
# cache stuff
if self.latest_model_hash != p.sd_model.sd_model_hash:
Script.clear_control_model_cache()
# unload unused preproc
module_list = [unit.module for unit in self.enabled_units]
for key in self.unloadable:
if key not in module_list:
self.unloadable.get(key, lambda:None)()
self.latest_model_hash = p.sd_model.sd_model_hash
for idx, unit in enumerate(self.enabled_units):
Script.bound_check_params(unit)
unit.module = global_state.get_module_basename(unit.module)
resize_mode = external_code.resize_mode_from_value(unit.resize_mode)
control_mode = external_code.control_mode_from_value(unit.control_mode)
if unit.module in model_free_preprocessors:
model_net = None
else:
model_net = Script.load_control_model(p, unet, unit.model, unit.low_vram)
model_net.reset()
input_image, image_from_a1111 = Script.choose_input_image(p, unit, idx)
if image_from_a1111:
a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
if a1111_i2i_resize_mode is not None:
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
a1111_mask_image : Optional[Image.Image] = getattr(p, "image_mask", None)
if 'inpaint' in unit.module and not image_has_mask(input_image) and a1111_mask_image is not None:
a1111_mask = np.array(prepare_mask(a1111_mask_image, p))
if a1111_mask.ndim == 2:
if a1111_mask.shape[0] == input_image.shape[0]:
if a1111_mask.shape[1] == input_image.shape[1]:
input_image = np.concatenate([input_image[:, :, 0:3], a1111_mask[:, :, None]], axis=2)
a1111_i2i_resize_mode = getattr(p, "resize_mode", None)
if a1111_i2i_resize_mode is not None:
resize_mode = external_code.resize_mode_from_value(a1111_i2i_resize_mode)
if 'reference' not in unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) \
and p.inpaint_full_res and a1111_mask_image is not None:
logger.debug("A1111 inpaint mask START")
input_image = [input_image[:, :, i] for i in range(input_image.shape[2])]
input_image = [Image.fromarray(x) for x in input_image]
mask = prepare_mask(a1111_mask_image, p)
crop_region = masking.get_crop_region(np.array(mask), p.inpaint_full_res_padding)
crop_region = masking.expand_crop_region(crop_region, p.width, p.height, mask.width, mask.height)
input_image = [
images.resize_image(resize_mode.int_value(), i, mask.width, mask.height)
for i in input_image
]
input_image = [x.crop(crop_region) for x in input_image]
input_image = [
images.resize_image(external_code.ResizeMode.OUTER_FIT.int_value(), x, p.width, p.height)
for x in input_image
]
input_image = [np.asarray(x)[:, :, 0] for x in input_image]
input_image = np.stack(input_image, axis=2)
logger.debug("A1111 inpaint mask END")
if 'inpaint_only' == unit.module and issubclass(type(p), StableDiffusionProcessingImg2Img) and p.image_mask is not None:
logger.warning('A1111 inpaint and ControlNet inpaint duplicated. ControlNet support enabled.')
unit.module = 'inpaint'
# safe numpy
logger.debug("Safe numpy convertion START")
input_image = np.ascontiguousarray(input_image.copy()).copy()
logger.debug("Safe numpy convertion END")
logger.info(f"Loading preprocessor: {unit.module}")
preprocessor = self.preprocessor[unit.module]
high_res_fix = isinstance(p, StableDiffusionProcessingTxt2Img) and getattr(p, 'enable_hr', False)
h = (p.height // 8) * 8
w = (p.width // 8) * 8
if high_res_fix:
if p.hr_resize_x == 0 and p.hr_resize_y == 0:
hr_y = int(p.height * p.hr_scale)
hr_x = int(p.width * p.hr_scale)
else:
hr_y, hr_x = p.hr_resize_y, p.hr_resize_x
hr_y = (hr_y // 8) * 8
hr_x = (hr_x // 8) * 8
else:
hr_y = h
hr_x = w
if unit.module == 'inpaint_only+lama' and resize_mode == external_code.ResizeMode.OUTER_FIT:
# inpaint_only+lama is special and required outpaint fix
_, input_image = Script.detectmap_proc(input_image, unit.module, resize_mode, hr_y, hr_x)
preprocessor_resolution = unit.processor_res
if unit.pixel_perfect:
preprocessor_resolution = external_code.pixel_perfect_resolution(
input_image,
target_H=h,
target_W=w,
resize_mode=resize_mode
)
logger.info(f'preprocessor resolution = {preprocessor_resolution}')
# Preprocessor result may depend on numpy random operations, use the
# random seed in `StableDiffusionProcessing` to make the
# preprocessor result reproducable.
# Currently following preprocessors use numpy random:
# - shuffle
seed = set_numpy_seed(p)
logger.debug(f"Use numpy seed {seed}.")
detected_map, is_image = preprocessor(
input_image,
res=preprocessor_resolution,
thr_a=unit.threshold_a,
thr_b=unit.threshold_b,
)
if unit.module == "none" and "style" in unit.model:
detected_map_bytes = detected_map[:,:,0].tobytes()
detected_map = np.ndarray((round(input_image.shape[0]/4),input_image.shape[1]),dtype="float32",buffer=detected_map_bytes)
detected_map = torch.Tensor(detected_map).to(devices.get_device_for("controlnet"))
is_image = False
if high_res_fix:
if is_image:
hr_control, hr_detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, hr_y, hr_x)
detected_maps.append((hr_detected_map, unit.module))
else:
hr_control = detected_map
else:
hr_control = None
if is_image:
control, detected_map = Script.detectmap_proc(detected_map, unit.module, resize_mode, h, w)
detected_maps.append((detected_map, unit.module))
else:
control = detected_map
if unit.module == 'clip_vision':
detected_maps.append((processor.clip_vision_visualization(detected_map), unit.module))
control_model_type = ControlModelType.ControlNet
if isinstance(model_net, PlugableAdapter):
control_model_type = ControlModelType.T2I_Adapter
if getattr(model_net, "target", None) == "scripts.adapter.StyleAdapter":
control_model_type = ControlModelType.T2I_StyleAdapter
if 'reference' in unit.module:
control_model_type = ControlModelType.AttentionInjection
global_average_pooling = False
if model_net is not None:
if model_net.config.model.params.get("global_average_pooling", False):
global_average_pooling = True
preprocessor_dict = dict(
name=unit.module,
preprocessor_resolution=preprocessor_resolution,
threshold_a=unit.threshold_a,
threshold_b=unit.threshold_b
)
forward_param = ControlParams(
control_model=model_net,
preprocessor=preprocessor_dict,
hint_cond=control,
weight=unit.weight,
guidance_stopped=False,
start_guidance_percent=unit.guidance_start,
stop_guidance_percent=unit.guidance_end,
advanced_weighting=None,
control_model_type=control_model_type,
global_average_pooling=global_average_pooling,
hr_hint_cond=hr_control,
soft_injection=control_mode != external_code.ControlMode.BALANCED,
cfg_injection=control_mode == external_code.ControlMode.CONTROL,
)
forward_params.append(forward_param)
if 'inpaint_only' in unit.module:
final_inpaint_feed = hr_control if hr_control is not None else control
final_inpaint_feed = final_inpaint_feed.detach().cpu().numpy()
final_inpaint_feed = np.ascontiguousarray(final_inpaint_feed).copy()
final_inpaint_mask = final_inpaint_feed[0, 3, :, :].astype(np.float32)
final_inpaint_raw = final_inpaint_feed[0, :3].astype(np.float32)
sigma = 7
final_inpaint_mask = cv2.dilate(final_inpaint_mask, np.ones((sigma, sigma), dtype=np.uint8))
final_inpaint_mask = cv2.blur(final_inpaint_mask, (sigma, sigma))[None]
_, Hmask, Wmask = final_inpaint_mask.shape
final_inpaint_raw = torch.from_numpy(np.ascontiguousarray(final_inpaint_raw).copy())
final_inpaint_mask = torch.from_numpy(np.ascontiguousarray(final_inpaint_mask).copy())
def inpaint_only_post_processing(x):
_, H, W = x.shape
if Hmask != H or Wmask != W:
logger.error('Error: ControlNet find post-processing resolution mismatch. This could be related to other extensions hacked processing.')
return x
r = final_inpaint_raw.to(x.dtype).to(x.device)
m = final_inpaint_mask.to(x.dtype).to(x.device)
y = m * x.clip(0, 1) + (1 - m) * r
y = y.clip(0, 1)
return y
post_processors.append(inpaint_only_post_processing)
if '+lama' in unit.module:
forward_param.used_hint_cond_latent = hook.UnetHook.call_vae_using_process(p, control)
setattr(p, 'controlnet_initial_noise_modifier', forward_param.used_hint_cond_latent)
del model_net
self.latest_network = UnetHook(lowvram=any(unit.low_vram for unit in self.enabled_units))
self.latest_network.hook(model=unet, sd_ldm=sd_ldm, control_params=forward_params, process=p)
self.detected_map = detected_maps
self.post_processors = post_processors
def postprocess_batch(self, p, *args, **kwargs):
images = kwargs.get('images', [])
for post_processor in self.post_processors:
for i in range(images.shape[0]):
images[i] = post_processor(images[i])
return
def postprocess(self, p, processed, *args):
self.post_processors = []
setattr(p, 'controlnet_initial_noise_modifier', None)
setattr(p, 'controlnet_vae_cache', None)
processor_params_flag = (', '.join(getattr(processed, 'extra_generation_params', []))).lower()
self.post_processors = []
if not batch_hijack.instance.is_batch:
self.enabled_units.clear()
if shared.opts.data.get("control_net_detectmap_autosaving", False) and self.latest_network is not None:
for detect_map, module in self.detected_map:
detectmap_dir = os.path.join(shared.opts.data.get("control_net_detectedmap_dir", ""), module)
if not os.path.isabs(detectmap_dir):
detectmap_dir = os.path.join(p.outpath_samples, detectmap_dir)
if module != "none":
os.makedirs(detectmap_dir, exist_ok=True)
img = Image.fromarray(np.ascontiguousarray(detect_map.clip(0, 255).astype(np.uint8)).copy())
save_image(img, detectmap_dir, module)
if self.latest_network is None:
return
if not batch_hijack.instance.is_batch:
if not shared.opts.data.get("control_net_no_detectmap", False):
if 'sd upscale' not in processor_params_flag:
if self.detected_map is not None:
for detect_map, module in self.detected_map:
if detect_map is None:
continue
detect_map = np.ascontiguousarray(detect_map.copy()).copy()
detect_map = external_code.visualize_inpaint_mask(detect_map)
processed.images.extend([
Image.fromarray(
detect_map.clip(0, 255).astype(np.uint8)
)
])
self.input_image = None
self.latest_network.restore(p.sd_model.model.diffusion_model)
self.latest_network = None
self.detected_map.clear()
gc.collect()
devices.torch_gc()
def batch_tab_process(self, p, batches, *args, **kwargs):
self.enabled_units = self.get_enabled_units(p)
for unit_i, unit in enumerate(self.enabled_units):
unit.batch_images = iter([batch[unit_i] for batch in batches])
def batch_tab_process_each(self, p, *args, **kwargs):
for unit_i, unit in enumerate(self.enabled_units):
if getattr(unit, 'loopback', False) and batch_hijack.instance.batch_index > 0: continue
unit.image = next(unit.batch_images)
def batch_tab_postprocess_each(self, p, processed, *args, **kwargs):
for unit_i, unit in enumerate(self.enabled_units):