-
Notifications
You must be signed in to change notification settings - Fork 2k
/
enums.py
236 lines (201 loc) · 7.78 KB
/
enums.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from enum import Enum
from typing import Any, List, NamedTuple
from functools import lru_cache
class UnetBlockType(Enum):
INPUT = "input"
OUTPUT = "output"
MIDDLE = "middle"
class TransformerID(NamedTuple):
block_type: UnetBlockType
# The id of the block the transformer is in. Not all blocks have cross attn.
block_id: int
# The index of transformer within the block.
# A block can have multiple transformers in SDXL.
block_index: int
# The call index of transformer if in a single step of diffusion.
transformer_index: int
class TransformerIDResult(NamedTuple):
input_ids: List[TransformerID]
output_ids: List[TransformerID]
middle_ids: List[TransformerID]
def get(self, idx: int) -> TransformerID:
return self.to_list()[idx]
def to_list(self) -> List[TransformerID]:
return sorted(
self.input_ids + self.output_ids + self.middle_ids,
key=lambda i: i.transformer_index,
)
class StableDiffusionVersion(Enum):
"""The version family of stable diffusion model."""
UNKNOWN = 0
SD1x = 1
SD2x = 2
SDXL = 3
@staticmethod
def detect_from_model_name(model_name: str) -> "StableDiffusionVersion":
"""Based on the model name provided, guess what stable diffusion version it is.
This might not be accurate without actually inspect the file content.
"""
if any(f"sd{v}" in model_name.lower() for v in ("14", "15", "16")):
return StableDiffusionVersion.SD1x
if "sd21" in model_name or "2.1" in model_name:
return StableDiffusionVersion.SD2x
if "xl" in model_name.lower():
return StableDiffusionVersion.SDXL
return StableDiffusionVersion.UNKNOWN
def encoder_block_num(self) -> int:
if self in (
StableDiffusionVersion.SD1x,
StableDiffusionVersion.SD2x,
StableDiffusionVersion.UNKNOWN,
):
return 12
else:
return 9 # SDXL
def controlnet_layer_num(self) -> int:
return self.encoder_block_num() + 1
@property
def transformer_block_num(self) -> int:
"""Number of blocks that has cross attn transformers in unet."""
if self in (
StableDiffusionVersion.SD1x,
StableDiffusionVersion.SD2x,
StableDiffusionVersion.UNKNOWN,
):
return 16
else:
return 11 # SDXL
@property
@lru_cache(maxsize=None)
def transformer_ids(self) -> List[TransformerID]:
"""id of blocks that have cross attention"""
if self in (
StableDiffusionVersion.SD1x,
StableDiffusionVersion.SD2x,
StableDiffusionVersion.UNKNOWN,
):
transformer_index = 0
input_ids = []
for block_id in [1, 2, 4, 5, 7, 8]:
input_ids.append(
TransformerID(UnetBlockType.INPUT, block_id, 0, transformer_index)
)
transformer_index += 1
middle_id = TransformerID(UnetBlockType.MIDDLE, 0, 0, transformer_index)
transformer_index += 1
output_ids = []
for block_id in [3, 4, 5, 6, 7, 8, 9, 10, 11]:
input_ids.append(
TransformerID(UnetBlockType.OUTPUT, block_id, 0, transformer_index)
)
transformer_index += 1
return TransformerIDResult(input_ids, output_ids, [middle_id])
else:
# SDXL
transformer_index = 0
input_ids = []
for block_id in [4, 5, 7, 8]:
block_indices = (
range(2) if block_id in [4, 5] else range(10)
) # transformer_depth
for index in block_indices:
input_ids.append(
TransformerID(
UnetBlockType.INPUT, block_id, index, transformer_index
)
)
transformer_index += 1
middle_ids = [
TransformerID(UnetBlockType.MIDDLE, 0, index, transformer_index)
for index in range(10)
]
transformer_index += 1
output_ids = []
for block_id in range(6):
block_indices = (
range(2) if block_id in [3, 4, 5] else range(10)
) # transformer_depth
for index in block_indices:
output_ids.append(
TransformerID(
UnetBlockType.OUTPUT, block_id, index, transformer_index
)
)
transformer_index += 1
return TransformerIDResult(input_ids, output_ids, middle_ids)
def is_compatible_with(self, other: "StableDiffusionVersion") -> bool:
"""Incompatible only when one of version is SDXL and other is not."""
return (
any(v == StableDiffusionVersion.UNKNOWN for v in [self, other])
or sum(v == StableDiffusionVersion.SDXL for v in [self, other]) != 1
)
class ControlModelType(Enum):
"""
The type of Control Models (supported or not).
"""
ControlNet = "ControlNet, Lvmin Zhang"
T2I_Adapter = "T2I_Adapter, Chong Mou"
T2I_StyleAdapter = "T2I_StyleAdapter, Chong Mou"
T2I_CoAdapter = "T2I_CoAdapter, Chong Mou"
MasaCtrl = "MasaCtrl, Mingdeng Cao"
GLIGEN = "GLIGEN, Yuheng Li"
AttentionInjection = "AttentionInjection, Lvmin Zhang" # A simple attention injection written by Lvmin
StableSR = "StableSR, Jianyi Wang"
PromptDiffusion = "PromptDiffusion, Zhendong Wang"
ControlLoRA = "ControlLoRA, Wu Hecong"
ReVision = "ReVision, Stability"
IPAdapter = "IPAdapter, Hu Ye"
Controlllite = "Controlllite, Kohya"
InstantID = "InstantID, Qixun Wang"
SparseCtrl = "SparseCtrl, Yuwei Guo"
def is_controlnet(self) -> bool:
"""Returns whether the control model should be treated as ControlNet."""
return self in (
ControlModelType.ControlNet,
ControlModelType.ControlLoRA,
ControlModelType.InstantID,
)
def allow_context_sharing(self) -> bool:
"""Returns whether this control model type allows the same PlugableControlModel
object map to multiple ControlNetUnit.
Both IPAdapter and Controlllite have unit specific input (clip/image) stored
on the model object during inference. Sharing the context means that the input
set earlier gets lost.
"""
return self not in (
ControlModelType.IPAdapter,
ControlModelType.Controlllite,
)
# Written by Lvmin
class AutoMachine(Enum):
"""
Lvmin's algorithm for Attention/AdaIn AutoMachine States.
"""
Read = "Read"
Write = "Write"
StyleAlign = "StyleAlign"
class HiResFixOption(Enum):
BOTH = "Both"
LOW_RES_ONLY = "Low res only"
HIGH_RES_ONLY = "High res only"
@staticmethod
def from_value(value: Any) -> "HiResFixOption":
if isinstance(value, str) and value.startswith("HiResFixOption."):
_, field = value.split(".")
return getattr(HiResFixOption, field)
if isinstance(value, str):
return HiResFixOption(value)
elif isinstance(value, int):
return [x for x in HiResFixOption][value]
else:
assert isinstance(value, HiResFixOption)
return value
class InputMode(Enum):
# Single image to a single ControlNet unit.
SIMPLE = "simple"
# Input is a directory. N generations. Each generation takes 1 input image
# from the directory.
BATCH = "batch"
# Input is a directory. 1 generation. Each generation takes N input image
# from the directory.
MERGE = "merge"