We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
目前使用 vllm 的方式運行8B模型
export NUM_GPUS=1 export PORT=8000 docker run \ -e HF_TOKEN=$HF_TOKEN \ --gpus all \ -v ~/.cache/huggingface:/root/.cache/huggingface \ -p "${PORT}:8000" \ --ipc=host \ vllm/vllm-openai:v0.4.0.post1 \ --model "yentinglin/Llama-3-Taiwan-8B-Instruct" \ -tp "${NUM_GPUS}"
然後使用LangChain 提供的連接vllm的方法連接 llm
from langchain_openai import ChatOpenAI model_id = "yentinglin/Llama-3-Taiwan-8B-Instruct" inference_server_url = "http://localhost:8000/v1" llm = ChatOpenAI( model=model_id, openai_api_key="EMPTY", openai_api_base=inference_server_url, temperature=0, streaming=True, )
接著參考官方的教學文件試做,但卻一直得不到 tool_calls,所以想請教您該模型是否支援 LangChain Tools 的用法,以及該問題的解決方法,還請您不吝指教,謝謝。
參考連結https://langchain-ai.github.io/langgraph/how-tos/pass-run-time-values-to-tools/#define-the-nodes
The text was updated successfully, but these errors were encountered:
No branches or pull requests
目前使用 vllm 的方式運行8B模型
然後使用LangChain 提供的連接vllm的方法連接 llm
接著參考官方的教學文件試做,但卻一直得不到 tool_calls,所以想請教您該模型是否支援 LangChain Tools 的用法,以及該問題的解決方法,還請您不吝指教,謝謝。
參考連結https://langchain-ai.github.io/langgraph/how-tos/pass-run-time-values-to-tools/#define-the-nodes
The text was updated successfully, but these errors were encountered: