forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
274 lines (235 loc) · 10.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Union
from ..._utils import pad_vocab_size
from ...functional import Tensor, allreduce, recv, send
from ...layers import (MLP, Attention, AttentionMaskType, ColumnLinear,
Embedding, LayerNorm)
from ...mapping import Mapping
from ...module import Module
from ..modeling_utils import (DecoderLayerList, DecoderModelForCausalLM,
QuantConfig, check_share_embedding)
from .config import FalconConfig
from .convert import load_weights_from_hf_by_shard, load_weights_from_hf_model
class FalconDecoderLayer(Module):
def __init__(self, config: FalconConfig, layer_idx: int):
super().__init__()
self.layer_idx = layer_idx
self.config = config
hidden_size = config.hidden_size
dtype = config.dtype
tp_group = config.mapping.tp_group
tp_size = config.mapping.tp_size
tp_rank = config.mapping.tp_rank
layernorm_epsilon = config.norm_epsilon
self.input_layernorm = LayerNorm(normalized_shape=hidden_size,
eps=layernorm_epsilon,
dtype=dtype)
self.new_decoder_architecture = config.new_decoder_architecture
self.parallel_attn = config.parallel_attention
self.num_ln_in_parallel_attn = config.num_ln_in_parallel_attn
if self.num_ln_in_parallel_attn is None and self.new_decoder_architecture:
self.num_ln_in_parallel_attn = 2
if self.is_parallel_attention:
# Not to apply allreduce inside the Attention/MLP layers.
# allreduce applies after those layer.
tp_group = None
layers_range = config.mapping.pp_layers(config.num_hidden_layers)
local_layer_idx = layer_idx - layers_range[0]
self.attention = Attention(
local_layer_idx=local_layer_idx,
hidden_size=hidden_size,
num_attention_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
max_position_embeddings=config.max_position_embeddings,
attention_mask_type=AttentionMaskType.causal,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
tp_rank=tp_rank,
bias=config.bias,
position_embedding_type=config.position_embedding_type,
rotary_embedding_base=config.rotary_base,
quant_mode=config.quantization.quant_mode,
)
mlp_hidden_size = hidden_size * 4 if config.intermediate_size is None else config.intermediate_size
if self.new_decoder_architecture and self.num_ln_in_parallel_attn == 2:
# Layernorm before MLP.
self.mlp_layernorm = LayerNorm(normalized_shape=hidden_size,
eps=layernorm_epsilon,
dtype=dtype)
else:
self.mlp_layernorm = None
self.mlp = MLP(
hidden_size=hidden_size,
ffn_hidden_size=mlp_hidden_size,
hidden_act=config.hidden_act,
dtype=dtype,
bias=config.bias,
tp_group=tp_group,
tp_size=tp_size,
quant_mode=config.quantization.quant_mode,
)
if self.is_parallel_attention:
self.post_layernorm = None
else:
self.post_layernorm = LayerNorm(normalized_shape=hidden_size,
dtype=dtype)
@property
def is_parallel_attention(self):
return self.new_decoder_architecture or self.parallel_attn
def forward(self,
hidden_states: Tensor,
attention_mask=None,
use_cache=False,
kv_cache_params=None,
attention_params=None):
assert isinstance(hidden_states, Tensor)
residual = hidden_states
if self.new_decoder_architecture and self.num_ln_in_parallel_attn == 2:
mlp_ln_output = self.mlp_layernorm(hidden_states)
hidden_states = self.input_layernorm(hidden_states)
input_ln_output = hidden_states
attention_output = self.attention(hidden_states,
attention_mask=attention_mask,
use_cache=use_cache,
kv_cache_params=kv_cache_params,
attention_params=attention_params)
if use_cache:
attention_output, presents = attention_output
if not self.new_decoder_architecture:
if self.parallel_attn:
hidden_states = input_ln_output
else:
hidden_states = residual + attention_output
residual = hidden_states
hidden_states = self.post_layernorm(hidden_states)
elif self.num_ln_in_parallel_attn == 2:
hidden_states = mlp_ln_output
if (self.new_decoder_architecture and self.parallel_attn
and self.num_ln_in_parallel_attn == 1):
hidden_states = input_ln_output
hidden_states = self.mlp(hidden_states)
if self.is_parallel_attention:
hidden_states = hidden_states + attention_output
if self.config.mapping.tp_size > 1:
hidden_states = allreduce(hidden_states,
self.config.mapping.tp_group)
hidden_states = residual + hidden_states
if use_cache:
return hidden_states, presents
return hidden_states
class FalconModel(Module):
def __init__(self, config: FalconConfig):
super().__init__()
self.config = config
if config.mapping.is_first_pp_rank():
self.vocab_embedding = Embedding(config.vocab_size,
config.hidden_size,
dtype=config.dtype)
self.layers = DecoderLayerList(FalconDecoderLayer, config)
if config.mapping.is_last_pp_rank():
self.ln_f = LayerNorm(normalized_shape=config.hidden_size,
dtype=config.dtype)
def forward(self,
input_ids: Tensor,
position_ids=None,
use_cache=False,
attention_mask=None,
kv_cache_params=None,
attention_params=None,
hidden_states=None):
if self.config.mapping.is_first_pp_rank():
hidden_states = self.vocab_embedding(input_ids)
else:
hidden_states = recv(hidden_states,
self.config.mapping.prev_pp_rank())
hidden_states = self.layers(hidden_states,
use_cache=use_cache,
attention_mask=attention_mask,
kv_cache_params=kv_cache_params,
attention_params=attention_params)
if use_cache:
hidden_states, presents = hidden_states
if self.config.mapping.is_last_pp_rank():
hidden_states = self.ln_f(hidden_states)
else:
hidden_states = send(hidden_states,
self.config.mapping.next_pp_rank())
if use_cache:
return (hidden_states, tuple(presents))
return hidden_states
class FalconForCausalLM(DecoderModelForCausalLM):
config_class = FalconConfig
def __init__(self, config: FalconConfig):
self.check_config(config)
transformer = FalconModel(config)
if config.mapping.is_last_pp_rank():
vocab_size_padded = pad_vocab_size(config.vocab_size,
config.mapping.tp_size)
lm_head = ColumnLinear(config.hidden_size,
vocab_size_padded,
bias=False,
dtype=config.dtype,
tp_group=config.mapping.tp_group,
tp_size=config.mapping.tp_size,
gather_output=True)
else:
lm_head = None
super().__init__(config, transformer, lm_head)
def check_config(self, config):
config.set_if_not_exist('bias', True)
config.set_if_not_exist('new_decoder_architecture', False)
config.set_if_not_exist('parallel_attention', False)
@classmethod
def from_hugging_face(
cls,
hf_model_or_dir: Union[str, 'transformers.PreTrainedModel'],
dtype: str = 'auto',
mapping: Optional[Mapping] = None,
quant_config: Optional[QuantConfig] = None,
**kwargs):
''' Create a FalconForCausalLM object from give parameters
'''
import transformers
load_by_shard = kwargs.pop('load_by_shard', False)
# load_model_on_cpu is ignored here, since specify target device_map will fail when workers > 1.
assert hf_model_or_dir is not None
use_preloading = isinstance(hf_model_or_dir,
transformers.PreTrainedModel)
if use_preloading:
hf_model = hf_model_or_dir
hf_config_or_dir = hf_model.config
else:
hf_model_dir = hf_model_or_dir
hf_config_or_dir = hf_model_or_dir
config = FalconConfig.from_hugging_face(hf_config_or_dir,
dtype=dtype,
mapping=mapping,
quant_config=quant_config,
**kwargs)
if use_preloading:
assert not load_by_shard
weights = load_weights_from_hf_model(hf_model, config)
elif load_by_shard:
weights = load_weights_from_hf_by_shard(hf_model_dir, config)
else:
hf_model = transformers.AutoModelForCausalLM.from_pretrained(
hf_model_dir, torch_dtype='auto')
weights = load_weights_from_hf_model(hf_model, config)
check_share_embedding(weights, config)
model = cls(config)
model.load(weights)
return model