-
Notifications
You must be signed in to change notification settings - Fork 74
/
train_gpt_sft.py
246 lines (208 loc) · 9.86 KB
/
train_gpt_sft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch.multiprocessing as mp
from omegaconf.omegaconf import OmegaConf, open_dict
from nemo.collections.nlp.data.language_modeling.megatron.gpt_sft_chat_dataset import get_prompt_template_example
from nemo.collections.nlp.data.language_modeling.megatron.megatron_batch_samplers import (
MegatronPretrainingBatchSampler,
)
from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel
from nemo.collections.nlp.parts.megatron_trainer_builder import MegatronTrainerBuilder
from nemo.core.config import hydra_runner
from nemo.utils import logging
from nemo.utils.exp_manager import exp_manager
from nemo_aligner.algorithms.supervised import SupervisedTrainer
from nemo_aligner.data.nlp.builders import build_dataloader, build_sft_dataset
from nemo_aligner.models.nlp.gpt.gpt_sft_model import GPTSFTModel
from nemo_aligner.utils.distributed import Timer
from nemo_aligner.utils.train_script_utils import (
CustomLoggerWrapper,
add_custom_checkpoint_callback,
extract_optimizer_scheduler_from_ptl_model,
init_distributed,
init_peft,
init_using_ptl,
resolve_and_create_trainer,
retrieve_custom_trainer_state_dict,
)
from nemo_aligner.utils.utils import load_from_nemo
"""Script to start SFT training"""
OmegaConf.register_new_resolver("multiply", lambda x, y: x * y, replace=True)
OmegaConf.register_new_resolver("int_div", lambda x, y: x // y, replace=True)
mp.set_start_method("spawn", force=True)
def _modify_config(gpt_cfg, cfg, add_cfg_to_tree=False):
"""
This function modifies the original gpt pre-training config (gpt_cfg) with attributes from the finetuning config (cfg).
The `add_cfg_to_tree` arg adds `cfg` to the top of the yaml tree which is needed for all `hparams.yaml` files when passed as an arg to `load_from_checkpoint()`.
"""
OmegaConf.set_struct(gpt_cfg, True)
OmegaConf.resolve(cfg)
with open_dict(gpt_cfg):
gpt_cfg.megatron_amp_O2 = cfg.model.get("megatron_amp_O2", False)
gpt_cfg.micro_batch_size = cfg.model.data.train_ds.micro_batch_size
gpt_cfg.global_batch_size = cfg.model.data.train_ds.global_batch_size
gpt_cfg.sequence_parallel = cfg.model.get("sequence_parallel", False)
gpt_cfg.activations_checkpoint_granularity = cfg.model.get("activations_checkpoint_granularity", None)
gpt_cfg.activations_checkpoint_num_layers = cfg.model.get("activations_checkpoint_num_layers", None)
gpt_cfg.activations_checkpoint_method = cfg.model.get("activations_checkpoint_method", None)
gpt_cfg.activations_checkpoint_layers_per_pipeline = cfg.model.get(
"activations_checkpoint_layers_per_pipeline", None
)
gpt_cfg.peft = cfg.model.peft
gpt_cfg.data = cfg.model.data
gpt_cfg.optim = cfg.model.optim
gpt_cfg.precision = cfg.trainer.precision
gpt_cfg.answer_only_loss = cfg.model.answer_only_loss
gpt_cfg.restore_from_path = cfg.model.restore_from_path
gpt_cfg.resume_from_checkpoint = cfg.model.resume_from_checkpoint
gpt_cfg.save_nemo_on_validation_end = cfg.model.save_nemo_on_validation_end
gpt_cfg.gradient_as_bucket_view = cfg.model.gradient_as_bucket_view
gpt_cfg.hidden_dropout = cfg.model.get("hidden_dropout", 0.0)
gpt_cfg.attention_dropout = cfg.model.get("attention_dropout", 0.0)
gpt_cfg.ffn_dropout = cfg.model.ffn_dropout
gpt_cfg.use_flash_attention = cfg.model.get("use_flash_attention", False)
# if TP/PP size is -1, use default TP/PP size as original model
if cfg.model.get("tensor_model_parallel_size", 1) > 0:
gpt_cfg.tensor_model_parallel_size = cfg.model.get("tensor_model_parallel_size", 1)
if cfg.model.get("pipeline_model_parallel_size", 1) > 0:
gpt_cfg.pipeline_model_parallel_size = cfg.model.get("pipeline_model_parallel_size", 1)
gpt_cfg.pipeline_model_parallel_split_rank = cfg.model.get("pipeline_model_parallel_split_rank", 0)
if cfg.model.data.get("chat", False):
# chat model, overwrite the prompt template
prompt_template = get_prompt_template_example(cfg.model.data.chat_prompt_tokens)
gpt_cfg.data.train_ds.prompt_template = prompt_template
gpt_cfg.data.validation_ds.prompt_template = prompt_template
sft_cls = GPTSFTModel
gpt_cfg.target = f"{sft_cls.__module__}.{sft_cls.__name__}"
if cfg.model.get("use_flash_attention", None) is not None:
gpt_cfg.use_flash_attention = cfg.model.use_flash_attention
if cfg.model.get("seq_len_interpolation_factor", None) is not None:
gpt_cfg.seq_len_interpolation_factor = cfg.model.seq_len_interpolation_factor
if cfg.model.get("dist_ckpt_load_strictness", None) is not None:
gpt_cfg.dist_ckpt_load_strictness = cfg.model.dist_ckpt_load_strictness
gpt_cfg.inference = cfg.model.get("inference", {})
# This is needed when modifying a hparam file directly to load `.ckpt` files.
# This is not needed to modify the cfg in `.nemo` files.
if add_cfg_to_tree:
OmegaConf.resolve(gpt_cfg)
gpt_cfg.cfg = gpt_cfg
return gpt_cfg
@hydra_runner(config_path="conf", config_name="gpt_sft")
def main(cfg) -> None:
logging.info("\n\n************** Experiment configuration ***********")
logging.info(f"\n{OmegaConf.to_yaml(cfg)}")
trainer = resolve_and_create_trainer(cfg, "sft")
exp_manager(trainer, cfg.exp_manager)
logger = CustomLoggerWrapper(trainer.loggers)
# hydra interpolation does not work here as the interpolation key is lost when PTL saves hparams
with open_dict(cfg):
cfg.model.precision = cfg.trainer.precision
ptl_model, updated_cfg = load_from_nemo(
GPTSFTModel,
cfg,
trainer,
strict=True,
modify_config_fn=_modify_config,
restore_path=cfg.model.restore_from_path,
return_updated_cfg=True,
)
init_peft(ptl_model, updated_cfg)
with open_dict(cfg):
# overwrite the model config with the config from the checkpoint
cfg.model.encoder_seq_length = ptl_model.cfg.encoder_seq_length
# pull values from checkpoint
trainer_restore_path = trainer.ckpt_path
# TODO: log this restore path
if trainer_restore_path is not None:
custom_trainer_state_dict = retrieve_custom_trainer_state_dict(trainer)
consumed_samples = custom_trainer_state_dict["consumed_samples"]
else:
custom_trainer_state_dict = None
consumed_samples = 0
init_distributed(trainer, ptl_model, cfg.model.get("transformer_engine", False))
train_data_cfg = cfg.model.data.train_ds
val_data_cfg = cfg.model.data.validation_ds
if cfg.model.data.get("sample", False):
# if it is negative, num_samples is None
if cfg.trainer.sft.max_steps < 0:
num_samples = None
else:
num_samples = cfg.trainer.sft.max_steps * train_data_cfg.global_batch_size
else:
num_samples = None
train_ds = build_sft_dataset(
train_data_cfg,
ptl_model.tokenizer,
num_samples,
answer_only_loss=True,
is_chat=cfg.model.data.chat,
special_tokens=cfg.model.data.chat_prompt_tokens,
)
if cfg.model.data.get("sample", False):
num_samples = cfg.trainer.sft.limit_val_batches * val_data_cfg.global_batch_size
else:
num_samples = None
validation_ds = build_sft_dataset(
val_data_cfg,
ptl_model.tokenizer,
num_samples,
answer_only_loss=True,
is_chat=cfg.model.data.chat,
special_tokens=cfg.model.data.chat_prompt_tokens,
)
train_dataloader = build_dataloader(
cfg=cfg,
dataset=train_ds,
consumed_samples=consumed_samples,
mbs=train_data_cfg.micro_batch_size,
gbs=train_data_cfg.global_batch_size,
collate_fn=train_ds.collate_fn,
drop_last=train_data_cfg.drop_last,
pad_samples_to_global_batch_size=not train_data_cfg.drop_last,
load_gbs=True,
)
val_dataloader = build_dataloader(
cfg=cfg,
dataset=validation_ds,
consumed_samples=0,
mbs=val_data_cfg.micro_batch_size,
gbs=val_data_cfg.global_batch_size,
collate_fn=validation_ds.collate_fn,
drop_last=val_data_cfg.drop_last,
pad_samples_to_global_batch_size=not val_data_cfg.drop_last,
load_gbs=True,
use_random_sampler=False,
)
init_using_ptl(trainer, ptl_model, train_dataloader, train_ds)
optimizer, scheduler = extract_optimizer_scheduler_from_ptl_model(ptl_model)
ckpt_callback = add_custom_checkpoint_callback(trainer, ptl_model)
logger.log_hyperparams(OmegaConf.to_container(cfg))
timer = Timer(cfg.exp_manager.get("max_time_per_run") if cfg.exp_manager else None)
sft_trainer = SupervisedTrainer(
cfg=cfg.trainer.sft,
model=ptl_model,
optimizer=optimizer,
scheduler=scheduler,
train_dataloader=train_dataloader,
val_dataloader=val_dataloader,
test_dataloader=None,
logger=logger,
ckpt_callback=ckpt_callback,
run_timer=timer,
)
if custom_trainer_state_dict is not None:
sft_trainer.load_state_dict(custom_trainer_state_dict)
sft_trainer.fit()
if __name__ == "__main__":
main()